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ABSTRACT: In this paper, the set of governing equations of temperature and thermo-mechanical 
stresses analyses in a rotating radially graded FG-disc with non-uniform thickness are derived. All 
mechanical and thermal properties of the material including elastic modulus, Poisson’s ratio, density and 
thermal conductivity and expansion coefficients are considered to be graded radially according to a power 
law function; The volume fraction changes in radial direction between two desired values. In thermal 
analysis, convention heat transfer through two sides of the disc are considered and thermal boundary 
conditions are considered as constant temperature at inner edge and convention heat transfer at outer one. 
In order to increase the accuracy, variation of convective heat transfer coefficient in radial direction and 
its dependency on the rotating speed are considered. Considering complexities of equations, differential 
quadrature method (DQM) is used as strong approach and both thermal and mechanical equations are 
solved numerically. Effect of various parameters such as rotating speed, variation of thickness and power 
law index on the distribution of temperature, stress and deflection of the disc are investigated. Finally, 
based on the Tamura-Tomota-Ozawa model (TTO), yield strength of the disc is derived and its elastic 
and plastic parts are detected.
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1- Introduction
Thermo-mechanical stress analysis of rotating disks is one 
of the most important engineering problems which can be 
used in many industrial applications such as centrifugal 
compressors, steam and gas turbines, aerospace devices and 
flywheels.
Using a semi-analytical method, Bayat et al. [1] studied 
mechanical and thermal stresses in a rotating disk with 
variable thickness due to radially symmetry loads. Hassani 
et al. [2] obtained elastic solutions for thermo-mechanical 
analysis of functionally graded rotating disks by semi-exact 
methods of Liao’s homotopy analysis method, Adomian’s 
decomposition method and variational iteration method. 
By applying finite element method, Shahzamanian et al. 
[3] analyzed thermoelastic contact problem of functionally 
graded rotating brake disk with the heat source due to contact 
friction that Coulomb contact friction was assumed as the 
heat source. Nie and Batra [4] demonstrated stress analysis 
and material tailoring in isotropic linear thermoelastic 
rotating disks whose  thickness, mass density, thermal 
expansion coefficient, and shear modulus were variable in 
the radial direction. Using finite element method, Sharma 
et al. [5] focused on the analysis of thermo-elastic stresses, 
displacements and strains in a thin circular functionally graded 
material disk subjected to thermal loads in which temperature 
profiles were modeled by the solution of heat conduction 
equation. Dynamics of rotating disks with stationary heat 
source was presented by Wauer and Schweizer [6] whereas 
thermo-elastic simulations were performed applying the fully 
coupled thermo-mechanical theory and were implemented 
by a finite element discretization. An analytical solution was 

presented for steady thermal stresses in rotating functionally 
graded hollow circular disks with constant angular velocity 
about its central axis by Peng and Li [7]. Kalali et al. [8] 
presented an exact solution for elasto-plastic stress analysis 
in rotating FG discs.

2- Governing Equations
As depicted in Fig. 1, a rotating disc with radial dependent 
thickness and properties is considered. The volume fraction 
of ceramic varies in radial direction as

(1)( )

( ) ( )

( )

( )

( ) ( ) ( ) ( )

2
2 2

2

0.8 0.8 0.6

2

1 2 3 42

1

:

:

0.0193

0
0

p

c cb ca cb

p

m c m cb ca cb

b

r

r bf f f f
a b

r bP P P P f f f
a b

d kA dA dAd T dT h hT T
dr kA dr dr kA dr kA dr
r b T T

dTr a k h T T
dr

h k r

d f dfa a f a a
d d
r b u
r a

Ff
a

ν ω

ζ ζ ζ ζ
ζ ζ

σ

∞

∞

−

− = + −  − 

 − = + − + −  −   

+ − = −

= =

= − = −

=

+ + = +

= =
= =

=

( )

( ) { }

( )

( )

( )

(1)

2 2

1
,

1

1

1

( ) (1) (

1

1

, 1,2,3,..., ;

1, 2,3,...,

r
m

cm
y ym c c

c m

r
r

r

N

i m
m
m i j

N

j m
ij m

m j

N

i m
m
m i

r

F r
E

r dF dt Fu F r T
E dr t dr r

Eq Ef f
q E E

d f A f
d

i j N i j

A

i j N

A A A

σ

ρ ω υ α

σ σ

ζ

ζ ζ

ζ ζ

ζ ζ

=
≠

=
≠

−

=
≠

=

 = + + − + ∆ 
 

 +
= − + + 

   =    


−


= ≠

 −= 


 − = =



=

∏

∏

∑

( )

1)

*

*

0.42
6

0 2

2 1

0.25 20 1 0.75

0.001 0.0075 0.5

2 2 10 0.25 0.75

r

b b

bm
m b

m

m
ca cb

m

r N

b a tt
a t t

Ta T T
E T

E ah f f

ϕ γ ζ ϕ

ρω β α

ρ ν

−

∞
∞

≤ ≤ −

= = = = = = − −

Ω = = = = = =

 
= = × = = 

 

where fcb and fca are the values of the volume fraction of 
ceramic at inner and outer radii of the disc and p is the power 
law index. Using Eq. (1), any property of the disc can be 
written as
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Figure 1. The geometry of the rotating FG disc with variable 

thickness
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In which subscripts m and c indicate values of the 
corresponding property in metal and ceramic, respectively.
The governing equation and boundary conditions for 
temperature distribution can be written as [9]
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where A=2πrt, A2=2π(r2-b2) and k is thermal conductivity 
coefficient. Also, h is thermal convection coefficient 
calculated as [10]

(4)

( )

( ) ( )

( )

( )

( ) ( ) ( ) ( )

2
2 2

2

0.8 0.8 0.6

2

1 2 3 42

1

:

:

0.0193

0
0

p

c cb ca cb

p

m c m cb ca cb

b

r

r bf f f f
a b

r bP P P P f f f
a b

d kA dA dAd T dT h hT T
dr kA dr dr kA dr kA dr
r b T T

dTr a k h T T
dr

h k r

d f dfa a f a a
d d
r b u
r a

Ff
a

ν ω

ζ ζ ζ ζ
ζ ζ

σ

∞

∞

−

− = + −  − 

 − = + − + −  −   

+ − = −

= =

= − = −

=

+ + = +

= =
= =

=

( )

( ) { }

( )

( )

( )

(1)

2 2

1
,

1

1

1

( ) (1) (

1

1

, 1,2,3,..., ;

1, 2,3,...,

r
m

cm
y ym c c

c m

r
r

r

N

i m
m
m i j

N

j m
ij m

m j

N

i m
m
m i

r

F r
E

r dF dt Fu F r T
E dr t dr r

Eq Ef f
q E E

d f A f
d

i j N i j

A

i j N

A A A

σ

ρ ω υ α

σ σ

ζ

ζ ζ

ζ ζ

ζ ζ

=
≠

=
≠

−

=
≠

=

 = + + − + ∆ 
 

 +
= − + + 

   =    


−


= ≠

 −= 


 − = =



=

∏

∏

∑

( )

1)

*

*

0.42
6

0 2

2 1

0.25 20 1 0.75

0.001 0.0075 0.5

2 2 10 0.25 0.75

r

b b

bm
m b

m

m
ca cb

m

r N

b a tt
a t t

Ta T T
E T

E ah f f

ϕ γ ζ ϕ

ρω β α

ρ ν

−

∞
∞

≤ ≤ −

= = = = = = − −

Ω = = = = = =

 
= = × = = 

 

in which ν is kinematic viscosity coefficient.
For stress analysis, governing equation and boundary 
conditions can be sated as (ζ=r/a)
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Also, radial displacement can be calculated as
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and the yield stress of the material can be written as
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in which σym is the yield stress of the metal and q=4.5 GPa 
[11].

3- Results and Discussion
In this section, numerical results are presented for a disc 
made of Ti and TiB2 whose  properties are listed in Table 1.
In order to study the effect of power-law index, consider a 
disc with the following properties:

( )

( ) ( )

( )

( )

( ) ( ) ( ) ( )

2
2 2

2

0.8 0.8 0.6

2

1 2 3 42

1

:

:

0.0193

0
0

p

c cb ca cb

p

m c m cb ca cb

b

r

r bf f f f
a b

r bP P P P f f f
a b

d kA dA dAd T dT h hT T
dr kA dr dr kA dr kA dr
r b T T

dTr a k h T T
dr

h k r

d f dfa a f a a
d d
r b u
r a

Ff
a

ν ω

ζ ζ ζ ζ
ζ ζ

σ

∞

∞

−

− = + −  − 

 − = + − + −  −   

+ − = −

= =

= − = −

=

+ + = +

= =
= =

=

( )

( ) { }

( )

( )

( )

(1)

2 2

1
,

1

1

1

( ) (1) (

1

1

, 1,2,3,..., ;

1, 2,3,...,

r
m

cm
y ym c c

c m

r
r

r

N

i m
m
m i j

N

j m
ij m

m j

N

i m
m
m i

r

F r
E

r dF dt Fu F r T
E dr t dr r

Eq Ef f
q E E

d f A f
d

i j N i j

A

i j N

A A A

σ

ρ ω υ α

σ σ

ζ

ζ ζ

ζ ζ

ζ ζ

=
≠

=
≠

−

=
≠

=

 = + + − + ∆ 
 

 +
= − + + 

   =    


−


= ≠

 −= 


 − = =



=

∏

∏

∑

( )

1)

*

*

0.42
6

0 2

2 1

0.25 20 1 0.75

0.001 0.0075 0.5

2 2 10 0.25 0.75

r

b b

bm
m b

m

m
ca cb

m

r N

b a tt
a t t

Ta T T
E T

E ah f f

ϕ γ ζ ϕ

ρω β α

ρ ν

−

∞
∞

≤ ≤ −

= = = = = = − −

Ω = = = = = =

 
= = × = = 

 

In Figs. 2 to 6 distribution of temperature rise, radial and 
circumferential components of stress, von-Mises stress and 
the radial component of displacement are depicted for various 
values of the power law index (p).
Fig. 2 shows that power law index has a weak effect on 
temperature distribution and the increase in the power law 
index leads to a little decrease in temperature rise. Figs. 3 
to 5 show that the rise in the value of the power law index 
leads to the decrease in radial, circumferential components 
of stress and von-Mises stress. Fig. 5 shows that with the 
increase in power-law index, the designer is able to eliminate 
plastic regions and keep the whole disc in elastic zone; but, it 
should be noted that as Fig. 6 shows, the rise in the value of 
power-law index, increases the value of radial displacement 
and deformation in disc which limits the value of the increase 
in power law index. In other words, an optimization can be 
done to find the best value of the power law index.
In order to study the effect of variation of thickness, a disc 
with the following properties is considered:
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Actually, with the increase in α, the disc becomes thinner in 
outer regions.
For various values of α, the variation of von-Mises stress is 
depicted in Fig. 7. This figure shows that with the increase 
in α, there is less possibility of creating plastic regions in the 
disc. In other words, in comparison with a disc of uniform 
thickness, non-uniform discs have better characteristics in 
both stress and deformation analyses. Also, using the discs 
with non-uniform thickness decreases the total weight of the 
system which can be considered as another merit of discs 
with a non-uniform thickness.

Ti TiB2

E, GPa 116 565
ρ, kg/m3 4506 4520

υ 0.32 0.108
α, 10-6 K-1 8.6 6.4
k, W/m.K 21.9 96
σy, MPa 450 -

Table 1. Properties of metal and ceramic.

Figure 2. Distribution of temperature rise.
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4- Conclusions
Using differential quadrature method, a numerical solution 
for thermo-mechanical stress analysis of rotating FG 
disc with the non-uniform disc was presented. Numerical 
examples showed that the increase in the value of power-
law index decreases the possibility of the existence of plastic 
regions and increases radial deformation. In other words, an 
optimization can be done to find the best value for the power 
law index.
Also, it was shown by numerical examples that in comparison 
with a disc of uniform thickness, non-uniform ones give 
better characteristics in stress and deformation analyses and 
decrease the total weight of the disc.
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