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Finite Element Analysis of Vibration Behavior of Micro-Rotors Utilizing a Developed 
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M. Hashemi, M. Asghari*

Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

ABSTRACT: In this paper, a three-dimensional finite element model is developed based on the 
strain gradient theory to investigate the vibration characteristics of micro-rotors. The model is not only 
capable of dealing with small-size effects, but also the flexibility of bearings, internal damping and 
mass eccentricity in the system. The expressions related to the strain energy of the shaft of the micro-
rotor are derived on the basis of strain gradient theory together with the kinetic energy of the system 
considering mass eccentricity in the disk and rotary inertia and gyroscopic effects of the rotating shaft-
disk system. By using the extended Hamilton’s principle to obtain weak forms of governing equations 
and approximating displacement components by special interpolation functions which can be used to 
model a strain gradient based micro-beam, equations of the motion are discretized into a finite element 
form. The natural frequencies, critical speeds and the threshold of instability rotational speed of the 
micro-rotor are obtained by transforming discretized equations of motion into state space form. The 
response of the micro rotor under excitation of the mass eccentricity of the disk in forced vibrations is 
also presented. Numerical results show profound effects of higher order material constant on vibration 
characteristics of the micro-rotor.  
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1- Introduction
Micro-rotating machinery with compact energy sources and 
high power density has been developed in the recent decade 
to run portable electronic devices. To achieve efficiency 
targets, these miniaturized turbo-machinery must spin at 
extremely high rotational speeds which can reach up to one 
million revolutions per minute [1]. At this relatively high 
spinning rate, the rotordynamic behavior of these systems 
plays an important role on  the stage of design. Since existing 
rotordynamic models are based on the classical continuum 
theory and this theory is incapable of appropriately predicting 
the mechanical behavior of the small-scale structures [2], 
non-classical continuum theories such as strain gradient 
theory have been proposed for vibration analysis of micro-
rotors by Asghari and Hashemi [3]. 
Although analytical expressions for natural frequencies 
of micro-rotors are obtained by using Galerkin’s method, 
the effects related to the flexibility of the bearings, internal 
damping and system response have not been discussed due to 
the limitations of the method used. As a result, in this paper 
by using finite element method, these vibration characteristics 
together with the small-size effect of micro-rotors are studied 
on the basis of strain gradient theory.

2- Problem Statement and Governing Equations
A micro-rotor, shown in Fig. 1 consists of a flexible and 
slender micro shaft and a rigid eccentric disk is mounted on 
two flexible bearings at both ends. The frame X-Y-Z is an 
inertial or fixed coordinate system, while frame x-y-z is a 
coordinate system which rotates about longitudinal axes at 
angular speed Ω.

Using strain gradient theory with Euler-Bernoulli beam 
model, the total strain energy can be stated as:
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After writing the total kinetic energy, as well as external 
work acting on the micro-rotor, Hamilton’s principle can be 
considered as:
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Figure 1. A micro-rotor mounted on flexible bearings and 
rotating with constant speed Ω
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Performing mathematical operations in accordance with the 
calculus of variations, we arrive at the governing equations 
for the lateral motion of a micro-rotor.

3- Solution Method
To solve the governing equation so as to  find vibration 
characteristics of micro-rotor, finite element method will 
be used. To do so, weak form formulation is employed 
and displacement components are estimated at the node by 
interpolation function Θi(s) proposed by Kahrobaiyan et al. 
[7] as:
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Following the procedure, the governing equations of the 
motion of the micro-rotor are discretized as
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To find resonant frequencies and information regarding  the 
stability of the micro-system, Eq. (6) can be transformed into 
state space form as

(5)
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Moreover, the response of the micro-rotor under mass 
eccentricity can be obtained as:
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4- Results and Discussion
The finite element codes according to the procedure 
described in this section are written in MATLAB software to  
find vibration characteristics of the micro-rotor.  We assume 
a specific ratio among higher-order material constants as,

{ } { }1 2 5 13 4, , , , 0.0393,  0.1323,  -0.0338, 0.0320,  0.3302a a a a a = Λ

based on the result which can be obtained for the aluminum. 
Moreover, a dimensionless higher-order material constant 
is defined as η=Λ1 /EIs. It should be noted that in the case 
of η=0, the results will be reduced to those of the classical 
continuum theory.
The model is validated for convergence, as well as for 
accuracy with existing results in specific cases. In this regard, 
some of the natural frequencies of a micro-rotating shaft are 
compared with reference [5] and presented  in Table 1.
Moreover, the variations of the first natural frequency of a 
micro-rotor for various values of η as a function of bearing 
stiffness κ is illustrated in Fig. 2. In addition, the deflection 
of the micro-rotor center as system response due to mass 
eccentricity in the disk for different values of η is also shown 
in Fig. 3.

 
5- Conclusions
A three-dimensional finite element model is developed based 
on the strain gradient theory to investigate the vibration 
characteristics of micro-rotors. After validating the proposed 
method, numerical results from vibration analysis of the 
micro-rotor show that:
1. By increasing the higher order material constant, the 

natural frequencies and the critical speeds of the micro-
rotor increase.

2. Regardless of the higher order material constant, odd 
and even natural frequencies of the micro-rotor decrease, 

Ω* 0 10 20 30

ω1
*

Ref.
1.1226 1.1855 1.2518 1.3214 (FW)

1.0629 1.0066 0.9536 (BW)

Present 
study

1.1224 1.1847 1.2504 1.3192 (FW)
1.0633 1.0075 0.9549 (BW)

ω2
*

Ref.
4.4754 4.7226 4.9828 5.2557 (FW)

4.2411 4.0196 3.8109 (BW)

Present 
study

4.4727 4.7181 4.9762 5.2469 (FW)
4.2401 4.0201 3.8128 (BW)

Table 1. Comparison of resonant frequencies of the micro-
spinning shaft by Hashemi and Asghari study [5]

Figure 2. Variations of the first natural frequency of a micro-
rotor versus bearing stiffness for various η.

Figure 3. Bode plot of system response for different η
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respectively by increasing  mass and mass moment of 
inertia of the disk.

3. The resonant frequencies of the micro-rotor in forwarding 
whirling motion increase and in backward whirling 
motion decrease by increasing rotational speed.

4. By increasing  the stiffness of the bearings, the resonant 
frequencies of the micro-rotor rise and the mode shapes 
deform to simply supported beam. This variation 
intensifies with an   increase of  higher order material 
constant.

5. Internal damping in the micro-rotor causes instability in 
the micro-rotor at a specific rotational speed known as 
the threshold of instability. By increasing  higher order 
material constant, the threshold of instability rotational 
speed goes up. 

6. Under mass eccentricity of the disk, the rotational speed, 
in which maximum and minimum amplitude of vibration 
occurs, increases with the increase of higher order 
material constant.
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