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ABSTRACT: This paper concerned with the examination of on-axis and off-axis dynamic responses of helicopters 
using a dynamic induced velocity model for a main rotor. The model consisted a canonical Legendry polynomial and 
a trigonometric function with a time dependent coefficients and arbitrary harmonics. The main reason for this, was 
the compatibility of the Legendry polynomial with the potential acceleration function presented by Laplace PDE for a 
main rotor at incompressible flow condition.The novel of the present research is the inflow dynamics with finite state 
wake that was efficiently adopted with the dynamic equations of single main rotor helicopters in the time domain. 
Therefore, the discretization of the wake inflow was avoided by the definition of finite inflow states. Furthermore, 
the possibility of air load computations is achieved through the state formulation and quasi steady aerodynamic 
implementation. Moreover, the singularity problem associated with the traditional inflow dynamics was avoided 
through the current inflow state. The obtained results showed that using dynamic inflow model with 28-states and 
4-harmonics significantly improves the off-axis dynamic responses of single main rotor helicopters. Comparison 
of results with the flight-test data and with the showed that both the off-axis and on-axis response of helicopters 
experience a fairy good improvements.   
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1- Introduction
Generally, helicopter flight dynamics simulation is the task 
of analyzing the dynamic response of a helicopter as a whole, 
particularly, helicopter response during unsteady transient 
conditions. The flight dynamics analysis inherently involves 
three fundamental sections. The first section is to describe the 
dynamics of the various components of the helicopter in an 
appropriate mathematical form. The second element involves 
the coupling of each component to form a complete model 
describing the dynamics of the helicopter as a whole. The 
third section is to use this complete model for determination 
of trim equilibrium conditions and time history responses to 
arbitrary pilot control inputs. 
Although some significant efforts made  around for a number 
of years have been slightly promoted the dynamic responses 
of helicopters, the reports show a long-term occurrence 
that described the off-axis problem as a major disruption in 
explanation of the final results [1-3]. This probably means 
that the most of the former studies are somewhat sophisticated 
when compared to real flights. 
In the present work,  more sophisticated representation of the 
main rotor dynamics and aerodynamics leading to improve 
both the on-axis and off-axis response is described. This is 
a cause of merging the coupled flap-lag and torsion elastic 
blade model along with an unsteady finite state inflow model 
in this research. The finite-state inflow theory improves the 
former Pitt-Peters inflow model by entering a higher-order 
representation of inflow variation along the rotor radius and 
higher-harmonic variations around the azimuth. The type 
of result that is  of our interest is the inclusion of higher-
harmonic blade loadings and higher-frequency loads on the 
helicopter during hover and forward flight phase. Fig. 1 shows 

a general layout of the finite state wake model formation. 
While the normal induced velocity is the most significant 
of all other components, the reduced ODEs corresponded to 
the third component of inflow vector is adequate for inflow 
calculations.

2- Methodology
The solution of the normal inflow ODEs is obtained when 
the forcing function together with normal induced velocity 
is approximated by a set of radial modal functions (Legendre 
polynomial) and azimuth-wise harmonics as [6]:
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The number of inflow states is obtained through the use of the 
following differential equations defined in the tip path plane 
coordinate system as:
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where cosine harmonic coupling matrices are [2]:
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Furthermore, the pressure coefficients τn
mc and τn

ms in Eq. 
(3) correspond to the lift distribution through the following 
equations;
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3- Results and Discussion
In this section, the transient responses of an articulated 
rotor helicopter to step-inputs at various trim conditions 
have been calculated, and  compared with flight test data 
[5]. The test data used for the comparison were obtained 
in a series of tests conducted for use in validation of the 
Rotorcraft Systems Integration Simulator. The trim data and 
selected transient-response time histories were provided 
to Sikorsky for use in their validation of the mathematical 
models. No stability augmentation was used during transient-
response data acquisitions. Analog and digital stability 
augmentation systems, the flight path stabilization system, 
and the horizontal stabilizer control system were disabled. 
This is a highly degraded configuration; the results are not 

representative of the UH-60A in the normal operation. The 
test procedure normally consisted of stabilizing in trim with 
one of the two redundant stability augmentation systems 
on; this was disabled one second before the control input. 
Unsatisfactory stability characteristics of the un-augmented 
aircraft, especially in pitch, required the pilot to initiate 
recovery within a few seconds of the input for the reasons of 
instability or safety. Furthermore, because the test program 
was organized in order to provide standard handling qualities 
data, the presented results are focused on both off-axis and 
on-axis dynamic response. Validations are discussed in terms 
of the pitch, roll, and yaw rate responses, which are important 
from the handling qualities point of view.
In all cases, trim control settings are normally obtained from 
the previous section for hover and 50-knot forward flight 
speed, corresponding to advanced ratios equaled to 0 and 
0.11, respectively. All results are taken at an altitude of 3000 
feet in a standard atmosphere and a gross weight of 16,000 lb. 
This corresponds to a blade loading of 0.069. 
As  can be seen from Fig. 2, the blade modeling, changing 
from second to 6th natural modes shapes, has very little 
influence on the prediction of power required.

In Fig. 3 pitch rate responses to lateral cyclic input for trimmed 
flight condition at 50 knots forward speed are shown. The 

Figure 1. Schematic of helicopter coordinate systems

Figure 2. Effect of blade modeling on helicopter power required 
versus airspeed
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time-history plots show that the finite state off-axis pitch rate 
response reaches to a maximum value, corresponding to -0.56 
degree per second, at which the control and damping moment 
balances, but with a different sign and magnitude compared  
to flight test data. The calculated pitch response indicates 
that the off-axis pitch response still suffers from a problem. 
This is likely due to the sign of the restoring moment and the 
helicopter translational acceleration, which strongly depends 
on the induced inflow distribution over the rotor disc. It 
seems that there is a phase shift in predicted finite state result 
in comparison with flight test data. This is due to the low-
frequency nature of the finite state inflow modeling in which 
it is assumed that the main rotor aerodynamics occurs slowly. 
Results show that the off-axis yaw rate response weakly 
depends on the type of implemented inflow models.

4- Conclusions
The practical implementation of the three-dimensional 
unsteady induced inflow model, a finite state representation, 
is included in a comprehensive flight dynamic simulation 
program. Based on the results presented in this paper, the 

following conclusions can be drawn; the on-axis responses 
are not significantly affected by inflow modeling in the 
time range of interest for flight dynamics applications, and 
correlations with flight test data are generally good. The finite 
state inflow model, which does not include induced wake 
distortions, shows fairly good predictions of the off-axis 
responses. The addition of the finite state inflow model fairly 
improves the off-axis response predictions both quantitatively 
and qualitatively.
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Figure 3. Off-axis pitch rate responses to lateral cyclic input, 
forward flight.




