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ABSTRACT: In this paper, the vibration and instability analyses of a thin-walled smart cylinder
subjected to the combined electro-thermo-mechanical loadings as well as internal fluid flow are
investigated based on piezoelasticity theory and nonlinear Donnell’s shell theory. The cylinder material
is considered to be made of piezo-ceramics as PZT4 to have a better resistance to the fluids. The fluid
flow is assumed to be incompressible, inviscid, irrotational and isentropic where its mathematically
modeling is performed based on a potential scalar function. The higher order governing equations of
motion are directly obtained by minimizing the energy of the system, using Lagrange equation of motions
and modal expansion analysis. The obtained governing equations are then solved via the state space
problem as well as fourth order numerical integration to obtain the nonlinear electro thermodynamical
response of the system. In the numerical results section, the effects of various parameters such as mean
flow velocity, aspect ratio, temperature change and excitation frequency on the natural and damping
frequencies, electro-thermo-dynamical response and energy spectrum of the system is studied in detail.
It is hoped that the results of this study play an important role to design new instability alert sensors for
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fluid conveying pipes.

Harmonic excitation

1- Introduction

In recent years, piezoelectric materials have attracted more
attention due to their interesting applications to smart
structures such as sensors and actuators. This is due to the
coupling effects between electrical and mechanical fields
of piezoelectric materials. Hitherto, a lot of applications
of piezoelectric materials have been reported, including
transducers that convert electric energy into mechanical
energy and vice versa, frequency control filters, sensors,
and controllers. On the other hand, dynamic behavior of the
structures in contact with the fluid flows (e.g. plates, shells,
airfoils and etc.) have been attracted more attention in recent
years due to their wide applications in many engineering
fields such as in chemistry, physics, medicine, military,
aerospace, atomic power plants, oil gas and petrochemical
industries. In this regard, Amabily et al. studied the dynamic
behavior and stability of fluid conveyed shell [1]. Reddy and
Wang [2] analyzed the dynamics of beams containing fluid
flow using finite element method.

In this paper, dynamical stability and vibration analyses of
a thin-walled piezoelectric shell under internal fluid flow
and the external harmonic load is investigated using energy
methods. The results of this paper especially may be used for
the measurement and stability control of fluid conveyed pipes
(i.e. instability alert sensors).

2- Piezoelasticity Theory

The subsequent characterization of electromechanical
coupling covers the various classes of piezoelectric materials.
Details with respect to definition and determination of the
constants describing these materials have been standardized
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by the Institute of Electrical and Electronics Engineers. In
this regard, stresses, and strains on the mechanical side, as
well as flux density and field strength on the electrostatic
side, may be combined as follows

C

G- 2l

where {c} , {¢} , {D} and {E} are stress, strain, electric
displacement and electric field vectors, respectively, and [C],
[e] and {€} are matrices of elastic stiffness, piezoelectric and
dielectric constants, respectively. Furthermore, the coefficients
of thermal expansion, pyroelectric and temperature change
are shown by {1} , {p} and A®, respectively.

(M

3- Cylindrical Shell Model

Based on the shell models, the displacement components of
an arbitrary point along x , & and z coordinates are denoted
by U, V and W, respectively, which are expressed in the
following form

U(x,H,z,t):u(x,H,t)_ZM )
ox
V(x,@,z,t):v (x,0,t)-z LM 3)
R o0
W(x,@,z,t):w (x,0.t), )

where u , v and w are the components of the tube midplane



A. Shooshtari and V. Atabakhshian, Amirkabir J. Mech. Eng., 50(1) (2018) 51-54, DOI: 10.22060/mej.2016.876

displacement and ¢ is the time.
According to Donnell’s nonlinear shell theory, the strain-
displacement relations can be written as

2 2
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4- Energy Functions
The total potential and kinetic energy of the piezoelectric
shell can be expressed, respectively as

U, = % [‘]lo D]{_;}dfl dx, ®)
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where 4, L, p_and V are the cross-section area, total length of
the shell, density and velocity vector of the shell, respectively,
and °.” is the dot product operator. The work W due to applied
radial excitation is

WH :J.OZ”J-OL (fxu +f6 +frW )dxrdH (10)

The total energy associated with the fluid flow is defined as

EE=2p IV, 7, ar. (11)

where I”is the cylindrical fluid volume.

5- Solution Methodology

In this study, mode expansion analyses besides Lagrange
equations of motion lead to a set of nonlinear discretized
governing equations of motion as

[M G} +[D [ }+[K J{a}={F}.

where [M] and [D] are the mass and damping matrices,
respectively and [K] is the stiffness matrix composed of
linear and nonlinear terms as

(12)

[K]z[KL +KNL]' (13)

Eq. (12) can be re-written as

{Mdd 0:| ‘?:d +|:Ddd 0:| q:d 4 Ku de 94 _ F, . (14)
o ollg,] Lo olld,] |Ku K,lla,| |F,

Due to the existence of static coupling between mechanical

and electric displacement, the parts of mass and damping
matrices associated with ¢ , and q , are obtained zero. By
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means of second set of equations of Eq. (14), the amplitude of
electric field vector can be calculated in terms of displacement
vector:

{0, =Ky 'Ky Jla,}- (15)

Eliminating ¢, in Eq. (14) and using Eq. (15), yields the
modified equations of motion which are then solved and
analyzed using the state space method, fourth order numerical
integration, and energy spectrum analyses.

6- Results and Discussion

The variations of dimensionless natural frequency versus
dimensionless flow velocity for the first four modes are
shown in Fig. 1. It can be found that the imaginary part of
frequency decreases with the increase of flow velocity for
all modes until reaching the value zero and instability occurs
in the system. The flow velocity at this point is defined as
the critical flow velocity that is located at Uf.* =0.0044 for the
first vibration mode. Within the zero-frequency area of the
first mode (0.0044 < U /* <0.0089), the real part of complex
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Figure 1. Dimensionless natural frequencies versus
dimensionless flow velocity for 1st to 3rd mode.
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Figure 2. Dimensionless damping frequencies versus
dimensionless fluid
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frequency has increased as shown in Fig. 2. Furthermore,
the magnitudes of natural frequencies of the first and second
modes are merged within 0.0089 < Uf.* < 0.0185 which is
physically known as flutter instability phenomenon. The
behavior of the system in the other modes is similar.

7- Conclusions

The most important results of this paper are listed below

1. By increasing the flow velocity, the natural frequencies
for all modes decreased until reaching the divergence
instability point (i.e. and Im(Q") =0 and Re(Q") # 0)

2. For the range of 0.0089 < Uf* <0.0185, the value of first
and second modes are merged which is called the flutter
instability.

3. The induction electric potential is increased by increasing
the flow velocity which is due to increasing strain field
of the shell. Hence, this fact may be considered to design
new instability alert sensors.

4. Increasing the temperature increased smoothly the
vibration amplitude of the system.
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