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Nonlinear Free Vibration in Flexure Beams with an Intermediate Rigid Element and 
a Tip Mass
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ABSTRACT: A usual method in achieving a proper value for the ratio of constraint to degree of freedom 
stiffness in a compliant mechanism, is using an intermediate rigid element in its constitutive beams. This 
paper aims to study the nonlinear free vibration of a stiffened beam with a mass connected to its tip. 
Hamilton’s principle is used to find nonlinear partial differential equations governing behavior of the 
beam. The mode-shapes of the normalized and linearized system are then found analytically and verified 
via Abaqus simulations. Using a single mode approximation, the first mode-shape of the system is used 
along with the Lagrange equations to find governing ordinary differential equations of degree of freedom 
and degree of constraint dynamic. These equations are then solved numerically using MATLAB. The 
Discrete Fourier Transform of dynamic responses show that the degree of freedom dynamic contains a 
single dominant frequency, while the constraint dynamic contains three main harmonics. It is observed 
that dominant frequencies are essentially natural frequencies of the linearized system which are available 
in a closed form. The suggested analytical formulations as well as the proposed frequency analysis, is 
expected to provide an effective approach for analytical dynamic modeling of more complex compliant 
mechanisms.
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1- Introduction
The use of compliant devices in different dynamic systems 
such as single [1] and multi-axis resonators [2], high-speed 
scanners [3], energy harvesting devices [4] and nano/
micropositioning systems [5] is well-established. These 
mechanisms provide a guided motion via elastic deformation, 
instead of employing sliding or rolling joints. This property 
has made them well-suited for the systems with high precision 
demand.
The main building blocks of these mechanisms are the flexible 
beams. Since flexure beams have a long slender geometry, 
Euler-Bernoulli’s beam theory can be successfully utilized to 
model the static, dynamic and vibratory behavior of them. 
This theory may be used along with a linear or nonlinear 
beam formulation [6]. The theoretical and experimental 
modelings of large amplitude vibration of the Euler-Bernoulli 
beams have been extensively investigated in the prior art. 
For example, Nayfeh and Mook [7] have modeled and 
analytically solved nonlinear vibrations of beams. Moeenfard 
and Awtar [8] modeled geometric nonlinearities in the planar 
vibration of a beam flexure with a tip mass and provided 
analytical perturbation solutions for the endpoint axial and 
lateral displacements of the beam.
In compliant mechanisms, the stiffness of the system in the 
DOF direction has to be minimized while its stiffness in the 
constraint direction shall be maximized. To achieve so, the 
flexure beam is usually stiffened using an intermediate rigid 
element. As far as the authors know, the dynamic behavior of 
such beams has not been yet reported in the prior art.
This paper deals with the modeling dynamic behavior of 
a flexure beams with an intermediate rigid part and a tip 

mass. Hamilton’s principle is utilized to find the governing 
equations of motion. Analytical mode-shapes of the 
system are derived in a closed form and verified using the 
commercially available finite element software Abaqus. A 
single-mode approximation is then used to find the ODEs 
governing the dynamics of the system. These ODEs are then 
solved numerically and analyzed using DFT.

2- Methodology
The schematic view of a partially stiffed flexure beam with a 
tip mass is depicted in Fig. 1.

The strain energy of this multi-body system can be expressed 
in terms of the displacement field of the system. Then 
using Hamilton’s principle, the equations of motion and the 
corresponded boundary conditions of this system can be 
obtained. The normalized form of these equations can be 
linearized and homogenized for finding the mode shapes of 
the system as
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Figure 1. The deformed and un-deformed configuration of a 
flexure beam with an intermediate rigid element and a tip mass
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where x=X/L , φk is the k’th mode of the system, βk is some 
coefficients of the k’th natural frequency and ci

(k) s are some 
constants which can be determined via satisfying boundary 
conditions.
In Fig. 2, the first mode shape obtained from the presented 
analytical technique is compared with that of FE simulations 
and excellent agreement is observed.

Using a single-mode approximation, one can say
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By substituting this single mode approximation for  the strain 
and kinetic energies along with using the Lagrange equations, 
the differential equations of motion can be obtained as
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where uα, ut and wt are the normalized axial displacements of 
the beam at X=a and X=L ,respectively and the normalized 
tip transverse displacement. Also fz is the normalized tip force 
in the z direction.

3- Results and Discussion
The solution of these equations for a sample initial condition 

is  presented in Fig. 3.

The time response presented in these figures can be further 
analyzed using discrete Fourier transform to reveal the 
frequency content of them. It may be easily verified that the 
frequency content of the response of the nonlinear system are 
essentially those of the linear homogeneous system and can 
be analytically obtained by solving the following equation.

(7)
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4- Conclusions
Understanding the nonlinear vibrations in flexure mechanisms 
is an essential first step to address better design insights. The 
existence of elastic stretching, geometric nonlinearities, and 
complicated boundary conditions make this investigation 
very difficult. In this paper, a nonlinear model is presented 

Figure 2. Comparison of the analytical and numerical 
prediction of the first mode shape of the system

(a)

(b)

(c)
Figure 3. Normalized axial displacements of the beam at (a) X=a 
and (b) X=L and (c) normalized tip transverse displacement at 

X=L
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for the dynamic behavior of compliant beams with a tip mass 
and an intermediate rigid element. The exact mode-shapes 
of this system were derived and numerical solutions were 
provided for the axial and transverse dynamic of the system. 
The presented approach in this paper can effectively be used 
to model and simulate multi-body compliant mechanisms 
and provide a clear understanding of how different design 
parameters may affect the nonlinear dynamic performance of 
the system.
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