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ABSTRACT: Single-phase and multiphase flows in porous media, both in nature and in industries, are very 
important for the wide range of researchers. Specifically, they have many applications in processes such as plant leaf 
sprays, pesticides, printers, and penetration of rain or surface waters to the soil. The main objective of this research 
is the analysis of droplet interaction with a porous medium. The droplets are of have similar scale of the pores of the 
porous medium, which its application is penetration of droplet with specific size into the bed rocks and filtering the 
droplets. In this study, the porous medium consists of square obstacles with porosity value of 0.8, is exposed to a 
two-phase flow. The porous medium that is wetted by primary phase is intruded by a droplet. The regimes of the flow 
is non-Darcian. The effective dimensionless numbers of the physics are Reynolds, Capillary, and Ohnesorge number. 
The values of exerted dimensionless pressure in the study are 0.000108, 0.000144, and 0.000180 and the range of 
Ohnesorge is 0.19-0.76. The factors connected with the droplet and secondary phase (related to fluid’s properties), 
such as surface tension and density ratio along with flow characteristics (such as exerted pressure) are effective and 
create variations in the behavior of droplet breakup, which in the frame of a comprehensive parametric study, are 
investigated. The types of droplet breakup, categorized and are presented by characteristic pictures of each case. 
Moreover, the zoning of each case in Re-Ohn Figure (as a droplet phenomenological breakup map on the basis of 
two dimensionless number and exerted pressure) is done. The results of the simulations, show the ability to predict 
droplet behavior in the porous medium using presented charts and moreover, make a comparison on relative effect 
of effective factors, are the redeeming features of this study. In this study, Lattice Boltzmann method is used as the 
numerical method that shows a high degree of capabilities and flexibility in relation with multi-phase flows and 
porous media.
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1- Introduction
This study is devoted to analyze behavior of a droplet in 
a porous medium. The droplet has the similar scale of the 
pore scale of the porous medium. In the literatures, there are 
several recent studies with respect to interaction of droplet on 
a porous medium [1-2] that all have considerable difference 
in the scale of droplet and the surrounding porous media.  
Selecting a Representative Elementary Volume (REV) would 
lead to more simplified study on the porous medium by 
maintaining the desired level of precision. The description of 
the problem setup is presented in Table 1. Also a schematic 
representation of the sample geometry can be seen in Fig. 1. 
The flow regime of the study can be determined according to 
the Reynolds number of the flow in a porous medium.
As a parametric study, totally 60 simulations in form of 
two different density ratios, three dimensionless pressure 
gradients, and ten Ohnesorge numbers were conducted. 
In the Reynolds number, U, D, ρ and µ are the fluid average 
speed in a cross section area, the diameter of the flow 
entrance pore of the porous medium, the density and the fluid 
dynamic viscosity, respectively. In the Capillary number, U, 
µ and σ are the fluid average speed in a cross section area, the 
dynamic viscosity of main phase and surface tension of two 
phases, respectively. Accurately, this dynamic multiphase 
flow number shows the efficacy of the main phase on the 
primary phase (droplet). In the Ohnesorge number, µ, σ, ρ and 
D in-order are the dynamic viscosity of droplet, the surface 
tension of two phases, the density and the initial diameter of 
droplet. Somehow, this number states the droplet resistance 
regardless of the flow effects (static nature).

 Corresponding author, E-mail: mrsalimi@sharif.ir

Porosity of the 
porous medium    0.8

Lattice size 201-201
Boundary condition Periodic up-down and left-right 
kinematic viscosity 
of phases 0.1666666, 0.1666666

Density ratio 1(drop):2, 1(drop):3
Reynolds number 2-16 (in non-Darcian range)

Assumptions:

Incompressible, Newtonian, and 
Isothermal flow, Constant surface 
tension, Wall adhesion effects are 
ignored, Exerted body force acts as 
a pressure gradient.

Table 1. Problem Description

Fig. 1. Schematic of Geometry
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2- Methodology
As a numerical method, Lattice Boltzmann Method (LBM), 
the multiphase model of the He et al. 1999 [3], D2Q9 and 
Bhatnagar–Gross–Krook (BGK) approximation are used. 
The LBM has been posed as an appropriate solution in fluids 
flow simulation and widely used during the recent years 
[4]. Against the common numerical methods on the basis 
of macroscopic continuum equations, the LBM is based 
on macroscopic models and mesoscopic kinetic. The basic 
idea in the LBM is to create simplified kinetic models which 
can satisfy the equations of macroscopic variables by using 
the fundamental principles of mesoscopic physics and the 
macroscopic properties obtained afterwards. The LBM shows 
the higher ability in multiphase flow and intricate geometries 
in proportion to other methods like macroscopic approaches.
The basic idea of the LBM model proposed by He is to use 
an index function to track the interface between two different 
phases which is similar to the level set approach [5]. The 
model uses two distribution function (f is index distribution 
function and g is pressure distribution function) which are 
described as below [1]:
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The corresponding equilibrium distributions are defined as 
below:
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The density of the index fluid, the pressure, and the velocity, 
are calculated using:
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The real fluid kinematic viscosity can be calculated from the 
index function using:

(4)
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3- Results and Discussion
As a validation, Laplace test is conducted and the results 
presented in the Fig. 2. To evaluate the mesh independency, 
density distribution in and around a droplet [6], was studied 
and lattice size of 201-201 was selected.
Several patterns of droplet break-up are observed that as 
representative samples, key frame of each pattern is presented 
in Fig. 3. The distinctive phenomenon between the two 
below break-up cases, is the occurrence of coalescence in the 
collapsed and detached droplets after the impact of primary 
droplet to the obstacle. In a trapped case the droplet trapped 
behind the obstacle, no penetration to the porous medium 
occurs and the intrusion of droplet to the porous medium 

failed.
According to Fig. 4, for each density ratio (1:2 and 1:3) and 
between different pressure gradient curves belongs to each 
density ratio, it can be seen that:
•	 By decreasing the Ohnesorge number down to specific 

value, Reynolds number levels out and the droplet also 
passes the obstacle (break-up without coalescence). 
Then, at a specific low limit value of Ohnesorge number 
(that can be considered as a critical Ohnesorge number), 
the droplet trapped behind the obstacle, result in a barrier 
against passing current and reduction of Reynolds 
number. In fact, the Reynolds number monotonously 
decrease to the minimum value (critical Ohnesorge 
value), the droplet also passes the obstacle (break-up 
with coalescence). With further decrease in Ohnesorge 
number, the droplet becomes more tangent to the frontal 
face of the obstacle and the Reynolds number of the 
flow slightly increases. Consequently, there are values 
of Ohnesorge numbers that indicate the transition of 
breakup patterns. Therefore, the Ohnesorge-Reynolds 
figures can be separated to several zones which denote 
specific and distinct break-up patterns (trapped, break-up 
with and without coalescence).

•	 By increasing the pressure gradient (via body force), 
Reynolds number range increases (curves moves to 
higher values of Reynolds number in vertical direction) 
and critical Ohnesorge numbers also moves to the left 
(lower values), in other words, trapping the droplet 
occurs sooner and in lower critical Ohnesorge number.  

In the Fig. 5, the solid and dashed lines indicate 1:2 and 1:3 
density, respectively. Increasing in the pressure gradient 
releatively leades to increase in Capilary number range and 
the portion of break-up phenomenon.
These figures can be produced and developed (by increasing 
the number of simulations that leads to more accurate border 
and marginal values in the figures) for every porous medium 

Fig. 2. The result of Laplace validation

Break-up without 
coalescence

Break-up with 
coalescence

trapped

Fig. 3. Droplet break up patterns
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(with different configuration and porosity), fluid, and flow 
properties. The adopted approach in the study and the 
figures obtained through, can predict droplet behavior using 
presented phenomenological breakup charts.

4- Conclusion
In the study, two-phase flow in a porous medium was 
analyzed. The porous medium wetted by the primary phase 
was intruded by a droplet. The regimes of the flow was 
non-Darcian. The model shows the ability to predict droplet 
behavior in the porous medium.
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Fig. 4. Ohn-Re figure-Density ratio of 1:2 (above), 1:3 (Below)

Fig. 5. Ca-Ohn figure-Density ratio of 1:2 and 1:3




