

Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 51(2) (2019) 89-91 DOI: 10.22060/mej.2017.12573.5370

Analysis of Corona Wind Effect on Mass Transfer and Energy Consumption in Drying of Moist Object

F. Dolati¹, N. Amanifard¹, H. Mohaddes Deylami^{2*}, Kh. Yazdani¹

¹Department of Mechanical Engineering, University of Guilan, Rasht, Iran ²Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar, Iran

ABSTRACT: In this paper, drying of the moist object is numerically investigated in the forced

convection with and without the electric field. Finite volume method is used to solve governing equations

of electric, flow, temperature, and the concentration fields in flow phase, as well as the temperature and

the moisture fields in the moist object. In this study, the effect of applied voltage and the arrangement of

the emitting electrode are evaluated. The results indicated that in presence of electric field, the increment of the applied voltage for 18 kV to 24 kV, the mass transfer from porous object 3.78 times and power consumption 7.96 times are increased. It is also found that the drying rate is increased by decreasing

the distance between the emitting and collecting electrodes. According to numerical results, the mass

transfer enhancement is usually accompanied by penalty of electric energy consumption. Therefore, the

specific energy consumption has been evaluated as final criterion. It is shown that the specific energy

consumption of the electrohydrodynamic drying process has been remarkably affected by the changing

of the emitter arrangements. Finally, an optimum arrangement has been introduced as the affordable

Review History:

Received: 24 February 2017 Revised: 7 July 2017 Accepted: 16 July 2017 Available Online: 25 July 2017

Keywords:

Mass transfer Corona wind Porous object Specific energy consumption

1-Introduction

arrangement.

Drying is a moisture removal from a solid object including evaporation and mass transfer of the moisture to the solid surface and the surrounding air as well. In order to achieve the desired mass transfer with minimum energy consumption, different techniques have been used. Electrohydrodynamic (EHD) as an active technique can be used to enhance the heat and mass transfer. In this method, a high voltage is applied to the discharge electrode to induce a secondary air flow which is known as corona wind. Chen and Barthakur [1] experimentally studied the EHD drying technique to dehydrate potato slabs with different thicknesses. They used a single point-to-plate corona discharge. Their results demonstrated that the EHD flow enhanced the average rate of evaporation by a factor of 2.5 for 2 mm and 4 mm slabs, and 2.1 for the 8 mm slab. Some researchers conducted a set of EHD experiments on Japanese radish [2], carrot slices [3], mushroom slices [4], and etc. All of them concluded that the drying rate highly is affected by EHD flow. Moreover, some studies reveal that the EHD drying gives superior quality in physiochemical properties as color, shrinkage, and nutrient content [5]. Amanifard and Haghi [6] numerically studied the mass transfer through a porous body. They revealed that the flow velocity is proportional to the moisture removal rate in Revnolds range of 50 to 1000. The purpose of the present work is to investigate the drying process through and over a porous body with the EHD-induced flow in different emitting electrode arrangements. Finally, to gain a more general

conclusion, the Specific Energy Consumption (SEC) of all cases is evaluated.

2- Geometry

Fig. 1 represents a schematic view of the computational domain used for the present study.

3- Governing Equations

The governing equations of the flow, thermal, and species fields including continuity, momentum, concentration and

Corresponding author, E-mail: hmohaddesd@guilan.ac.ir

energy equations as well as transport equations of k and ε , are as follows.

$$\frac{\partial(\rho u_i)}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho u_{i}) + \frac{\partial \left(\rho u_{i} u_{j}\right)}{\partial x_{i}} = -\frac{\partial P}{\partial x_{j}} + \frac{\partial}{\partial x_{i}} \left[\left(\mu + \mu_{i}\right) \frac{\partial u_{j}}{\partial x_{i}} \right] + \vec{f_{b}}$$

$$\tag{2}$$

with $\mu_t / \rho = C_{\mu} k^2 / \varepsilon$

$$\frac{\partial(\rho c_p T)}{\partial t} + \frac{\partial(\rho u_i T)}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\left(\frac{\mu}{\Pr} + \frac{\mu_t}{\Pr_t} \right) \frac{\partial T}{\partial x_j} \right]$$
(3)

$$\frac{\partial(\rho c_p C)}{\partial t} + \frac{\partial}{\partial x_i} (\rho c_p u_i C)$$

$$= \frac{\partial}{\partial x_j} \left[(D + \frac{\mu_i c_p}{\Pr_c}) \frac{\partial C}{\partial x_j} \right]$$
(4)

The equation for moisture conservation is given by [6]:

$$\frac{\partial M}{\partial t} = (D_{tl} + D_{tv})(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}) + (D_{ml} + D_{mv})(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2})$$
(5)

The energy equation for the porous body is obtained as:

$$(c_{0} + m_{I}c_{I} + m_{v}c_{v})\frac{\partial T}{\partial t} = \frac{(k_{\rho_{0}} + h_{fg}D_{tv})(\frac{\partial^{2}T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial y^{2}}) + (h_{fg}D_{mv})(\frac{\partial^{2}M}{\partial x^{2}} + \frac{\partial^{2}M}{\partial y^{2}})}{The governing equations for the electric field as following$$

The governing equations for the electric field as following:

$$\nabla^2 V = -\frac{\rho_c}{\varepsilon} \tag{7}$$

$$\frac{\partial \rho_c}{\partial t} + \nabla \cdot \left(-\rho_c \beta \nabla V \right) = 0 \tag{8}$$

4- Results and Discussion

The average moisture content in different emitting electrode positions is shown in Fig. 2. It indicates that average moisture content is remarkably influenced by the position of the emitting electrode. It is found that arrangement 5 has maximum moisture removal.

The average moisture for three configurations is represented in Fig. 3. The results confirmed that shorter distances between corona wire and collector electrodes intensify the strength of vortices and increases the deviation of flow toward the moist object.

The SEC for each case is presented in Table 1 and Table 2. The results show that SEC is significantly sensitive to the vertical gap size and the arrangements of emitting electrode.

It is noticed that when arrangemet B is used, the specific energy consumption has the minimum value and it can be concluded that this arrangemet may be affordable.

5- Conclusions

The convective drying rate of a porous body through a smooth channel is numerically studied when it is affected by corona wind. It is found that the drying rate is increased by decreasing the distance between the emitting and collecting electrodes. According to numerical results, the mass transfer enhancement is usually accompanied by penalty of electric energy consumption. Therefore, the SEC has been evaluated as final criterion. It is shown that the SEC of the EHD drying process has been remarkably affected by the changing of the emitter arrangements. Finally, an optimum arrangement has been introduced as the affordable arrangement.

References

 Y. Chen, N.N. Barthakur, N. Arnold, Electrohydrodynamic (EHD) drying of potato slabs, Journal of Food Engineering, 23(1) (1994) 107-119.

Fig. 3. Average moisture content in vertical arrangements

No. arrangements	<i>P</i> , W	Moisture removal, kg/kg dry solid	SEC, kJ/kg
1	0.016352	0.0080201	102.62
2	0.007733	0.0062722	62.139
3	0.009496	0.0080373	59.549
4	0.010333	0.0119608	43.539
5	0.019459	0.0177672	55.201

Table 1. Specific energy consumption of EHD drying in horizontal arrangements

Table 2. Specific energ	y consumption of EHD	drying in ve	rtical arrangements
-------------------------	----------------------	--------------	---------------------

Arrangements	<i>P</i> (W)	Moisture removal (kg/kg dry solid)	SEC (kJ/kg)
А	0.019459	0.017767	55.201
В	0.021407	0.021016	48.817
С	0.039065	0.026820	73.412

- [2] T. Bajgai, F. Hashinaga, High electric field drying of Japanese radish, Drying Technology, 19(9) (2001) 2291-2302.
- [3] A.A. Alemrajabi, F. Rezaee, M. Mirhosseini, A. Esehaghbeygi, Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying process, Drying Technology, 30(1) (2012) 88-96.
- [4] S.T. Dinani, M.J.I.C. Havet, Products, Effect of voltage and air flow velocity of combined convectiveelectrohydrodynamic drying system on the physical

properties of mushroom slices, Industrial Crops and Products, 70 (2015) 417-426.

- [5] S.T. Dinani, N. Hamdami, M. Shahedi, M.J.F. Havet, B. Processing, Quality assessment of mushroom slices dried by hot air combined with an electrohydrodynamic (EHD) drying system, Food and Bioproducts Processing, 94 (2015) 572-580.
- [6] N. Amanifard, A. Haghi, A numerical study on drying of porous media, Korean Journal of Chemical Engineering, 25(2) (2008) 191.

Please cite this article using:

F. Dolati, N. Amanifard, H. Mohaddes Deylami, Kh. Yazdani, Analysis of Corona Wind Effect on Mass Transfer and

Energy Consumption in Drying of Moist Object, *Amirkabir J. Mech. Eng.*, 51(2) (2019) 89-91. DOI: 10.22060/mej.2017.12573.5370

