
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 50(5) (2018) 3-6
DOI: 10.22060/mej.2017.13299.5592

A C1 Finite Element Formulation for Mindlin-Reissner Microplate Model
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ABSTRACT: In this paper, a C1 finite element (FE) formulation of Mindlin-Reissner microplate based 
on strain gradient elasticity theory is developed. The general form of the stiffness matrix and force vector 
of the microplate element is firstly extracted, and then specialized on a four-node quadrilateral element 
with 36 degrees of freedom. Deformation of rectangular microplates with simply-supported edges, 
clamped edges, and three edges simply-supported and the fourth edge free, and under uniform external 
pressure is then studied. For the case of microplate with simply-supported boundaries, comparison 
between the FE and the corresponding exact solution is made, which shows extremely close results. 
For the next two examples, a convergent solution by means of mesh refinement is obtained. Moreover, 
for the case of thin plates and for large values of the thickness-to-material length ratio, the results of 
gradient-based FE analysis are coincident with those of the Kirchhoff plate model based on classical 
elasticity. Numerical simulations show that the introduced element is able to capture the size effect 
phenomenon at micron scale. When the plate thickness is in the order of the material length parameter, 
the value of deflection is lower than that predicted by the models based on classical elasticity. 
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1- Introduction
Various experimental results demonstrate that deformation 
of solids at micron scale is size-dependent [1-3]. Contrary 
to classical theory, in the strain gradient theory, originally 
developed by Mindlin [4], the strain energy function is 
a function of the strain as well as its derivative, and thus 
the stresses depend upon higher-order derivatives of the 
displacement field. It has been proven that strain gradient 
theory is effective in predicting the size-dependent elastic 
as well as plastic deformation of solids at micron scale [1-
3, 5]. The simplest format of the theory, used in this work, 
was introduced by Aifantis [6] that contains a single material 
length scale parameter.
The objective of this work is to develop a four-node 
quadrilateral finite element (FE) for numerical analysis of 
gradient-elastic plate structures. A plate element, based on 
C1-continuous interpolation functions, for the numerical 
analysis of Reissner-Mindlin microplates is developed. The 
introduced element is based on Aifantis [6] form of strain 
gradient theory to capture size dependent behavior of plates 
at small scales. 

2- Methodology
The strain energy density function U in the strain gradient 
theory of Aifantis [6] is given by

(1)( ) ( )2 21
2 ii jj ijj ikk ij ij ijk ijkU l lλ ε ε ξ ξ µ ε ε ξ ξ= + + +

 
where ijε  and ijkξ  are the components of strain and strain 
gradient tensors, respectively. Additionally, l is the material 

length scale parameter in this theory.  The stress and double 
stress tensors are calculated via /ij ijUσ ε= ∂ ∂  and 

/ijk ijkUτ ξ∂ ∂= , respectively.
Next, a microplate with constant thickness and material 
properties is considered. The displacement field corresponding 
to the flexural deformation of Mindlin-Reissner plate model 
is described by [7, 8]

(2)3,      u z u wα αψ= =

where ( 1,2)α αψ =  are the rotation angles and w is the 
transverse deflection field. The components of strain and 
strain gradient tensors are calculated based on Eq. (2). Then, 
the stress and double stress components can be calculated. The 
classical as well as non-classical resultants of the microplate 
are defined by
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For FE formulation using virtual work principle, the variation 
of strain energy density is decomposed into two parts as 

(1) (2)U U Uδ δ δ+= , with

(5)
(1) (2){ {, } , }ij ij ijk ijkV

U U dVδ δ σ δε τ δξ= ∫
Next, the vectors F  and ω are defined by
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where ( ), , 2αβ α β β ακ ψ ψ+=  and 3 , wα α αγ ψ= + . It 

is noted that the relation ω=F D  holds, where D  is the 
classical plate stiffness matrix. Accordingly, the expression 
for (1)Uδ  takes the following simple form:

(8)( )(1)  .  
A A
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Now, a microplate element with n  arbitrary nodes is 
considered. The rotation and deflection fields are interpolated 
via the relation
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Where IN  are the interpolation functions. By Eqs. (7) and (9), 
the generalized strain vector ω is discretized by the relation 
ω= e

 ù B d , where B  is a generalized strain-displacement 
matrix. Accordingly, Eq. (8) is rewritten as

(10)(1) ( )Uδ δ= e e e
1d . K d

where e
1K  is the classical part of the element stiffness matrix 

given by

(11)A
dA= ∫e T

1K B DB

Similar to what was done for the classical part, the gradient-
based vectors *

 F  and ω* are defined as follows:
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where the matrix relation ω* * * F = D  holds. Using Eqs. (9) 
and (13), the discretized form of ω* is given by ω** * e

  ù = B d , 
where *

 B is the corresponding generalized strain gradient-
displacement matrix. This together with Eqs. (12) and (13) 
yields the following expression for (2)Uδ :

(14)(2)
2( )Uδ δ= e eed . K d

where 2
eK  is the gradient part of the element stiffness matrix 

given by

(15)A
dA= ∫e *T * *

2K B D B

Finally, the element stiffness matrix of the strain gradient 
Mindlin-Reissner microplate model is given by the relation

= +e e e
1 2K K K  . 

The element force vector depends on the applied external 
node. For instance, if p  is the resultant external pressure on 
the element in +z direction, and qα  are distributed moments 
per unit area around x α , the element force vector is given by

(16)1 2{ , , }e Tq q dAp= ∫f N N N
A

3- Results and Discussion
A rectangular plate of dimensions 1 2L hL× × , 
with Lα  as the length of the plate along the xα -coordinate, 
is considered. In the first example, a rectangular plate with 
simply-supported boundaries is considered. In the second 
one, the plate edges are assumed to be clamped. In the third 
examples, three edges are simply-supported and the forth one 
is free. To have non-dimensional results, the following non-
dimensional parameters, similar to those defined in Ref. [9], 
are introduced:

(17)1 1

2

,     ,     ,    C

L Lh wX Y Z W
l h L w

= = = =

where Cw is the maximum plate deflection based on the 
classical Kirchhoff plate model (e.g., Ref. [10]).
In the first two examples, due to symmetry, only one-quarter 
of the geometry is discretized by n×n meshes of the newly 
introduced element. Convergence analysis shows that, in 
both examples, a 16×16 elements for mesh is sufficient to 
have convergent results for all values of the non-dimensional 
parameters X, Y and Z. 
Now, the first example as a square plate with simply-supported 

Fig. 1. Variation of the non-dimensional deflection W versus 
X and for various values of Y in a simply-supported square 

microplate

Fig. 2. Variation of the non-dimensional deflection W versus X 
and for various values of Y in a square microplate with clamped 

boundaries
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edges is considered. Variations of the nondimensional center 
deflection W versus the ratio of thickness-to-material length 
scale parameter X, and for several values of the width-to-
thickness ratio Y, have been illustrated in Fig. 1. As can be 
seen from the figure, the curves generated by the present 
finite element formulation and those based on the exact 
solution calculated based on the formulation in Ref. [9] are 
indistinguishable. 
In the next example, a square plate with clamped boundaries 
under uniform pressure is considered. The nondimensional 
center deflection W versus variations of the X parameter 
and for several values of the width-to-thickness ratio Y has 
been illustrated in Fig. 2. By increasing the thickness, the 
nondimensional deflection W  approaches to that predicted by 
the Mindlin-Reissner plate model based on classical elasticity 
theory. In the third example, a square plate with three edges 
simply-supported and the fourth edge free is considered. 
Convergence study reveals that a 16×32 elements for mesh 
is sufficient to have convergent results. The nondimensional 
center deflection W versus variations of the X parameter and 
for several values of the width-to-thickness ratio Y has been 
depicted in Fig. 3. Size effect is observed for 30X < . 

4- Conclusions
In this work, a C1 four-node quadrilateral microplate element 
for the analysis of Mindlin-Reissner microplates was 
developed. The formulation was based on the Aifantis form 
[6] of strain gradient elasticity theory to capture size effect 
phenomenon. By solving three examples, the capability and 

efficiency of the new element for a wide range of geometric 
parameters was investigated. It was shown that the new 
element can successfully capture the so-called size effect. 
Moreover, it was observed that the element behaves very well 
in moderately thick as well as very thin plates. Additionally, 
it was shown that the new element can regenerate the results 
of the Mindlin-Reissner plate model in the context of the 
classical continuum theory when the ratio of thickness-
to-material length parameter, namely /X h l= , takes 
sufficiently large values.
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Fig. 3. Variation of the non-dimensional deflection W versus X 
and for various values of Y in a square microplate with three 

edges simply-supported and the fourth edges free




