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ABSTRACT: In this paper, using modified couple stress theory, a new cylindrical shell element is 
introduced. Since classical continuum theory is unable to correctly compute stiffness and account for 
size effects in micro/nanostructures, higher-order continuum theories such as modified couple stress 
theory have taken on great appeal. In this paper, using modified couple stress theory and using shell 
model in place of beam model, buckling of nanotubes is investigated via the finite element method. 
The new cylindrical shell element based on the super element’s shape function defined and the mass-
stiffness matrix has been developed. In addition to modified couple stress cylindrical shell element, the 
classical cylindrical shell super element can also be defined by setting size effects parameter to zero in 
the equations. In special cases, in order to investigate the application of the equations developed, the 
cylindrical nanoshell buckling is studied using a modified couple stress cylindrical shell element and 
the results are validated using the analytical method. In addition, the effects of parameters such as size 
effects parameter, length, and thickness on cylindrical shell buckling are investigated. 
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1- Introduction
Since classical continuum theories, due to their lack of intrinsic 
length scales, are unable to correctly predict the behavior of 
micro/nanostructures, use of higher-order theories which are 
able to account for size effects in computations has become 
popular [1-3].
Due to the topological structure of a nanotube in the form of a 
cylindrical shell, the use of a shell model is significantly more 
effective in correctly predicting nanotubes behavior than the 
use of a beam model [4].
Since the complexity of micro/nanostructures such as 
complicated loading or geometry, the use of the analytical 
method is not always possible, it is especially important to 
use other current methods such as Finite Element Method 
(FEM).
In the present paper, using the finite element method and 
modified couple stress theory which are able to take size 
effects into account and to model micro/nanostructures 
correctly, a new cylindrical shell element is introduced.

 
2- Element Definition and Relationships
A 16-node cylindrical super element at length L, radius R, and 
thickness h is considered according to Fig. 1. 
Displacement of a point of the cylindrical shell element which 
can be represented by vector U with components u, v, and w 
along r, θ and x is expressed as follows:

(1){ } 3 48 48 1
Tu v w × ×=U = N d

where N is the shape functions matrix and d is nodes 
displacements vector. 
According to the modified couple stress theory, strain energy 
is defined as follows [5]:

(2)( )1 : :
2

U dV
Ω

= +∫ ó å m ÷

Classical and non-classical components of the strain tensor 
for the cylindrical element are defined as:

(3)( ), ,
1
2ij i j j iu uε = +
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Figure 1. Cylindrical shell super element.
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(4)( )1
4ij ipq jpq jpq ipqe eχ η η= +

where ui, eipq, and ηipq represent the components of the 
displacement vector, permutation symbol, and deviator stretch 
gradient tensor, respectively. The classical components of 
strain tensor are determined as follows:
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which can be expressed in the matrix form as:

(6)=å LU = LNd = B d
Higher order strain components are obtained as follows:
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 which can be expressed in the matrix form as: 

(8)=÷ LU = LNd = B d
The components of Cauchy stress tensor and the symmetric 
part of the higher-order stress tensor are determined as 
follows:

(9)=ó C å = C Bq

(10)

According to the above equations the stiffness matrix of the 
new element defined as follows: 

(11)( )T T

V
dV= +∫K B CB B DB

The element stress stiffness matrix [ ]eK σ  is defined for an 
isoparametric element as follows:

(12)[ ][ ]e T

V
S dVσ = ∫[K ] [G] G

3- Results and Discussion
In this section, attempts have been made to demonstrate 
the use of the new cylindrical shell element in solving the 
problem. Static linear analysis is the basis for a general 
buckling problem and the equilibrium equation can be stated 
as below: 

(13)[ ]{ } { }K D R=
where {R} is an arbitrary load. Finally, the critical load of the 
buckling problem is defined as follows:

(14)det([ ] [ ]) 0K K σλ+ =
The dimensionless critical buckling load obtained for 
different radius/thickness scale are compared with analytical 
results in Table 1 that shows by increasing radius/thickness 
scale, critical axial buckling load will decrease, which is due 
to the decrease in rigidity. The critical axial buckling load 
obtained from couple stress theory are greater than that of 
analytical, which is due to the presence of one size parameter 
in couple stress theory.
Furthermore, the effect of length to radius ratio on 
dimensionless critical axial buckling load of nano cylindrical 
shell for different size effects, the effect of length scale 
parameter for different thickness and the effect of thickness 
of nano cylindrical shell were investigated in this paper. 
The results show that an increase in the length/radius scale 
leads to a decrease in the critical axial buckling load, which 
is due to the decrease in nano cylindrical shell rigidity. It is 
shown that with increasing size effect parameter, the effect 
of length increasing on dimensionless critical axial buckling 
load reduction is more and by increasing the size parameter, 
the critical axial buckling load will increase too, which is 

R/h Analytical [6] Couple stress theory

30 0.0310 0.0354

35 0.0257 0.0304

40 0.0222 0.0246

45 0.0193 0.0211

50 0.0171 0.0183

Table 1. Dimensionless critical buckling load
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due to the increase in rigidity. It is obvious that using this 
new cylindrical shell super element, h/R increment leads to 
increasing the critical axial buckling load.

4- Conclusions
Size-dependent cylindrical shell super element formulation 
is developed in this paper by using shell model in place of 
beam model and using the modified couple stress theory in 
place of classical continuum theory. The stiffness matrix and 
geometric stiffness matrix for cylindrical shell super element 
are developed in this paper, and by means of size-dependent 
finite element, formulation are extended to more precisely 
account for nanotube buckling. Based on the results, it is 
appropriate to use this cylindrical shell super element in 
micro/nano-scale problems. The results showed using this 
cylindrical shell element, the rigidity of the nano-shell are 
greater than that in the classical theory, and the critical axial 
buckling load obtained from couple stress theory are greater 
than that of analytical, which is due to the presence of one size 
parameter in couple stress theory. The findings indicate that 
the new cylindrical shell element is reliable for simulating 
micro/nanostructures and can be used for the analysis of size 
effect and has desirable convergence characteristic. 
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