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Free Vibration Analysis of Nanotube-Reinforced Composite Conical Shell in High-
Temperature Environment
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ABSTRACT: In this research, free vibration analysis of functionally graded carbon nanotube reinforced 
composite conical shells subjected to the high-temperature environment is investigated. The material 
properties of functionally graded carbon nanotube reinforced are assumed to be graded through the 
thickness direction. Two kinds of carbon nanotube reinforced composites including uniformly distributed 
in which carbon nanotubes are distributed uniformly through the shell thickness, and functionally graded 
in which carbon nanotubes are graded with three different distributions, are considered. The effect of 
thermal loading is considered as initial stress. Applying Hamilton’s principle based on the classic theory 
and considering Von Karman strain-displacement relation, the governing equations are obtained. The 
analytical Galerkin method together with beam mode shapes as weighting functions is employed to solve 
the equations of motion. The results are compared with those presented in the literature. In addition, the 
effect of various parameters such as thermal loading, boundary conditions, and different geometrical 
conditions are studied. It is shown that the initial thermal stresses have significant effects on the natural 
frequencies and cannot be neglected. Moreover, the critical buckling temperature rise of the shells can be 
extracted from the presented diagrams of the fundamental frequency parameters versus the temperature 
rise. 
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1- Introduction
With attention to the need for high strength and light structures, 
it is necessary to increase the ratio of strength to weight 
for these structures. In recent years, by the development 
of nanoscience, Carbon Nanotube Reinforced Composite 
(CNTRC) shells have been used as a new approach in the 
construction of shells.
Mirzaei and Kiani [1] studied the thermal buckling of 
Functionally Graded Carbon Nanotube Reinforced composite 
(FGCNTRC) conical shells. A semi-analytical method for 
studying the buckling of moderately thick carbon nanotube 
reinforced composite conical shells under axial compression 
is presented by Hosseini and Talebitooti [2]. Shen [3] studied 
thermal buckling and post-buckling of CNTRC cylindrical 
shells with a higher order shear deformation shell theory. Shu 
[4] presents the first endeavor to apply the global method 
of Generalized Differential Quadrature (GDQ) to the free 
vibration analysis of composite laminated conical shells. Jam 
and Kiani [5] studied the buckling of FGCNTRC conical 
shells subjected to lateral pressure. Free vibration analysis of 
embedded FGCNTRC conical, cylindrical shells and annular 
plates using the Variational Differential Quadrature (VDQ) 
method is carried out by Ansari et al. [6]. Recently, Mehri 
et al. [7] investigated the bifurcation and vibration responses 
of a Carbon Nanotube (CNT) reinforced functionally graded 
conical shells. 
To the best of the author’s knowledge, the effect of boundary 

conditions on vibration and thermal buckling analysis of the 
CNTRC conical shell in the high-temperature environment 
is not available in open literature. The present research 
investigates the vibration and thermal buckling of FGCNTRC 
conical shells with different boundary conditions using the 
Galerkin method. Four types of distribution of CNTs are 
considered in this article. 

2- Problem Formulation
The coordinate system in a conical shell is shown in Fig. 1. 
The length is denoted as L, semi-cone angle φ, small radius 
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R1, and large radius R2. The displacements in the longitudinal 
(x), circumferential (θ) and radial (z) directions in the shell 
are denoted as u, v and w, respectively. 
The forces and moment resultant are calculated as follows:
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The governing differential equations of motion can be derived 
by using Hamilton’s principle as:
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The displacement fields for a circular truncated conical shell 
are assumed to be in the following form:
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With substituting Eq. (3) into Eq. (2) and using the Galerkin 
method, the whole system of differential equation has been 
discretized and the set of linear algebraic equations will be 
produced as:
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3- Results and Discussion
To validate the results, they are compared with the previous 
works. At first, critical buckling temperature is compared 
with those of CNTRC conical shell by Mirzaei and Kiani [1], 
as shown in Table 1. The secondary comparisons are listed in 
Table 2, are demonstrated with the work done by Ansari et 
al. [6] which considers different types of CNTs distribution.
The variations of the frequency of CNTRC conical shells 
with ΔT for three different semi-cone angles are shown in 
Fig. 2. Both sides of the conical shell have simply supported 
boundary conditions and uniformly distributed (UD) -type 
is selected. It can be observed from this figure that ΔT with 
the occurrence of the critical buckling temperature decreases 
when the semi-cone angle is enhanced.
The variations of the fundamental frequency of CNTRC 
conical shells with  ΔT for four different lengths to small 
radius ratios and two type CNT distributions are shown in Fig. 
3. It can be seen from this figure that the frequency decreases 
as the temperature difference between the inner and outer 
surface increases. It is noteworthy that the sensitivity rate of 

 VCN
* CNTs distribution [1] Present

uniformly 
distributed (UD)

394.06 397.41

0.12 FGX 407.61 411.48

FGV 388.16 393.29
FGA 382.25 386.35

402.48 407.96
0.17 UD 417.33 421.85

FGX 396.82 400.35
FGV 390.44 394.96
FGA 390.44 394.96

Table 1. The effect of CNTs distribution on critical buckling 
pressure.
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Figure 2. Variation of the frequency versus ΔT for the conical 
shell with different cone angles.
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* CNTs distribution  [6] Present

UD 6.00 5.98

0.12 FGA 5.89 5.86

FGX 6.61 6.60

UD 7.51 7.49

0.17 FGA 7.43 7.41

FGX 8.29 8.28

Table 2. Comparison of 2
1

m mR h Eω ρΩ =   for CNTRC 
conical shell (  ,  1 1/ 2 / 20, 30 ,oL R R h SSϕ= = = )
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the fundamental frequency to ΔT increases with decreasing 
length to radius ratio.

4- Conclusions
The following main conclusions of the paper have been 
obtained:
• Conical shells with FGX type of CNTs distribution 

have the highest fundamental frequency because of the 
existence of more nanotubes in the outer surface that 
causes increasing stiffness of the shell. 

• Fundamental Frequency increases when the volume 
fraction of CNTs rises. The highest fundamental 
frequency is occurred in VCN

*=0.28  for ΔT=0 K. 
However, the maximum critical temperature buckling is 
occurred in VCN

*=0.17 .

• The effect of ΔT on reduction in frequency becomes 
more noticeable as the length to the radius of the shell 
is increased.

References
[1] Mirzaei, M. and Kiani, Y., 2015. “Thermal buckling of 

temperature dependent FG-CNT reinforced composite 
conical shells”. Aerospace Science and Technology, 47, 
pp. 42-53.

[2]  Hosseini, M. and Talebitooti M., 2017. “Buckling analysis 
of moderately thick FG carbon nanotube reinforced 
composite conical shells under axial compression 
by DQM.” Mechanics of Advanced Materials and 
Structures:, see URL http://dx.doi.org/10.1080/1537649
4.2017.1308597.

[3]  Shen, H.-S., 2012. “Thermal buckling and postbuckling 
behavior of functionally graded carbon nanotube-
reinforced composite cylindrical shells.” Composites 
Part B: Engineering 43(3), pp. 1030-1038.

[4]  Shu, C. 1996. “ Free vibration analysis of composite 
laminted conical shells by generalzed differntial 
quadrature.” Journal of Sound and Vibration 194(4), pp. 
587-604.

[5]  Jam, J.E. and Kiani, Y., 2015. “Buckling of pressurized 
functionally graded carbon nanotube reinforced conical 
shells”. Composite Structures, 125, pp.586-595, 2015.

[6]  Ansari, R., et al., 2016. “Free vibration analysis of 
embedded functionally graded carbon nanotube-
reinforced composite conical/cylindrical shells and 
annular plates using a numerical approach.” Journal 
of Vibration and Control, see URL https://doi.
org/10.1177/1077546316659172. 

[7]  Mehri, M., et al., 2016. “Buckling and vibration analysis 
of a pressurized CNT reinforced functionally graded 
truncated conical shell under an axial compression using 
HDQ method.” Computer Methods in Applied Mechanics 
and Engineering, 303, pp. 75-100. 

Figure 3. Variation of the fundamental frequency versus ΔT for 
the conical shell with different L/R1. 
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