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Geometrical Symmetry Constraint
M. Teimouri, M. Asgari* 

Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran 

ABSTRACT: Topology optimization of structures, seeking the best distribution of mass in the design 
space to improve the performance and weight of a structure, is one of the most comprehensive issues 
raised in the field of structural optimization. In addition to the structure stiffness as the most common 
objective function, frequency optimization is of great importance in automotive and aerospace 
industries achieved by maximizing the fundamental frequency or the gap between two consecutive 
eigenfrequencies. The phenomenon of multiple frequencies, mesh dependency of topology responses, 
checkerboarding, geometric symmetry constraint, and occurrence of artificial localized vibration 
modes in low-density regions are the most important challenges faced by the designer in stiffness and 
frequency optimization problems which influence the manufacturability of the design too. In this paper, 
Bidirectional Evolutionary Structural Optimization (BESO) method which is a successful approach in 
stiffness problems is applied for a frequency and stiffness problem separately via creating a software 
package including a Matlab code and Abaqus FE solver linked to each other. Also, in this paper, the effect 
of geometric symmetry constraint is considered on resulted topologies from stiffness and frequency 
problems. So the BESO method is applied for modeling a 2D beam and its stiffness and frequency 
optimization and finally, the optimization results of both objective functions will be compared with the 
initial structure.
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1- Introduction
The main objective of structural optimization is to improve 

the functional and technological design of load-bearing 
structures by considering objectives that are oftentimes 
contradictory, like minimizing total mass or volume, 
minimizing stress, maximizing stiffness, maximizing 
fundamental frequency, etc. Topology optimization as the 
most comprehensive type of structural optimization is 
performed in the initial phases of the design process. The 
purpose is to determine the best material distribution in the 
design space, with respect to objective functions in order 
to improve structural efficiency and reduce weight [1]. 
Various optimization methods such as homogenization [1], 
solid isotropic material with penalization parameter [2-6], 
evolutionary structural optimization [7, 8], and Level-set [9, 
10] have been presented over the past decades. Evolutionary 
structural optimization methods (ESO), is performed for 
discrete values of the design variable. It can be said that 
only two conditions are considered for a material used in 
the design space. In the BESO approach, first introduced 
by Yang et al. in 1999 [11], unlike the original methods that 
gradually eliminated unnecessary elements from the finite 
element model, the possibility of adding deleted elements 
was provided at the same time too. 

In this paper, the Bidirectional Evolutionary Structural 
Optimization (BESO) method is modified (MBESO) and 
developed for frequency problems while solving it for a 
stiffness problem. The proposed MBESO is applied for 
stiffness and frequency optimization of a 2D beam via 
creating a software package including a Matlab code and 
Abaqus FE solver linked to each other. Also, in this paper, 
the effect of geometric symmetry constraint is considered on 
resulted topologies from stiffness and frequency problems 
and is considered as an effective factor in the convergence 
of the objective function for symmetric problems. Finally, 
the optimization results of both objective functions will be 
compared with the initial structure.

2- Topology Optimization Problem Statement
Topology optimization for stiffness objective function and 

a given volume of material is stated as: 
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where f and u are the applied load and displacement vectors 
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and C is known as the mean compliance. If we assume that 
the design variable xi continuously changes from 1 to xmin 
(soft-kill approach) the sensitivity of the objective function 
with respect to the change in the design variable is:
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The natural frequency ωj optimization problem can be 

stated as:
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An alternative material interpolation scheme can be 
expressed as below to solve the artificial localized vibration 
modes in the low-density regions:
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From Eq. (4), the sensitivity of the objective function ωj 

can be expressed as:
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3- Sensitivity Number Improvement
In addition to the sensitivity filter scheme [12] used in the 

BESO method in order to solve numerical problems, based on 
the computer experience, averaging the elemental sensitivity 
number in one or two successive steps in the optimization 
process, improves numerical instabilities:
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First Step:

Second Step:

4- Numerical Example
4- 1-  Topology design of a 2 dimensional beam for frequency 
and stiffness

In this example, a simply supported 2 dimensional beam 
structure shown in Fig. 1 is considered for a prescribed 
volume fraction of Vf = 50%. The rectangular design domain 
of 8m × 1m is divided into 320 × 40 four-node plane stress 
elements. Young’s modulus E = 10 MPa, Poisson’s ratio  
ν = 0.3 and mass density ρ = 1 kg/m3. A Newtonian force 

is also applied at the middle of lower edge for stiffness 
optimization. BESO parameters are selected as: ER = 2%, 
ARmax = 2 %, xmin = 10-6, rmin=0.075m and p=3.

4- 2- Geometrical symmetry constraint
Du to the fact that elemental sensitivity numbers in 

stiffness optimization are of energy dimension, geometrically 
symmetric elements will have an equal chance of elimination. 
In frequency problem sensitivity numbers of symmetric 
elements are not the same due to their angular dimension 
(Fig. 2).

 

 

Fig. 2. Non-symmetric first mode shape in 27th 

  

In this paper the geometric symmetry constraint has been 
applied at the stage of removal/addition of elements.

5- Results and Discussion
Fig. 3 illustrates the final topologies of the structure for 

single-objective stiffness and frequency optimization.

 

 

 

Fig. 3. Final topology of the 2 dimensional beam for maximum a) stiffness and b) fundamental frequency with 
50% of volume fraction constraint. 

  

The evolutionary history of the stiffness and frequency 
objective functions and their corresponding volume fraction 
is shown in Fig. 4. 

6- Conclusions
In this paper, a modified BESO algorithm has been 

separately implemented for both stiffness and frequency 
objective function on a two-dimensional beam using a 
software package containing Matlab and Abacus linked 
to each other. As a result, while reducing the weight of the 
structure to half, the stiffness and natural frequency of the 
beam were maximized. It’s seen that stiffness maximization 
leads to improvement of the frequency response which 
is a positive occurrence, but on the other hand, the natural 
frequency maximization weakens the structure stiffness. This 
point must be considered when both bending stiffness and 

 

Fig. 1. Two dimensional design domain 

  

Fig. 1. Two dimensional design domain

Fig. 2. Non-symmetric first mode shape in 27th iteration

(a

(b

Fig. 3. Final topology of the 2 dimensional beam for maximum 
a) stiffness and b) fundamental frequency with 50% of volume 

fraction constraint.
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(b)

Fig. 4. Evolutionary history of the objective function and the volume fraction for a) stiffness b) frequency.
 

frequency are important.
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