
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 52(1) (2020) 31-34
DOI: ﻿ 10.22060/mej.2018.14089.5795

Control of a Piezoelectric Nano-Actuator based on Flexoelectric Size-Dependent 
Theory
H. Vaghefpour, H. Arvin* , Y. Tadi

Solid Mechanics Department, Faculty of Engineering, Shahrekord University, Shahrekord, Iran

ABSTRACT: In this paper, for the first time feedback control algorithms and fuzzy control are 
implemented for tip tracking control of a piezoelectric size-dependent cantilever nanobeam as a nano-
actuator to a desired path. The governing partial differential equation of motion is obtained based on a 
size-dependent high-order flexoelectric theory. The equations of motion for an isotropic piezoelectric 
Euler-Bernoulli nanobeam are derived based on the von-Karman geometric nonlinearity besides 
employing the Hamilton’s principle and variational approach. In order to reduce the governing partial 
differential equations into a set of ordinary differential equations the Galerkin projection method is 
implemented. By introducing a new set of variables, the state space model of nanobeam is derived. 
The state feedback, integral state feedback and fuzzy control algorithms are employed to achieve a 
desired output for tip tracking. Regarding to the findings of this paper, it can be concluded that the fuzzy 
controller, integral state feedback and state feedback controller have the best performance in that order.
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1- Introduction
In nano scale, the dielectric polarization depends not only 

on the strain tensor but also on the curvature tensor. Hence, 
it can be deduced that the flexoelectric effect is universally 
present in all nano scale dielectrics [1]. Tadi [2] attempted 
to derive piezoelectric nanobeam formulation in the general 
case by using the size-dependent piezoelectricity theory. 
Mechanical vibrating elements are used in a large number of 
NanoElectroMechanical Systems (NEMS), for sensing and 
actuating. In these systems, it is important to achieve a high 
sensitivity. So far the most focused control topic has been 
the stabilization of NEMS resonators. It can be seen that, 
although in recent years, several studies have developed the 
dynamic modeling and vibration analysis of nonclassical 
nanobeams however tracking control of the Piezoelectric 
Nanobeams (PNb) with the flexoelectric effects has not been 
considered yet. Hence, vibration of a PNb is formulated based 
on the nonclassical continuum mechanics. The governing 
equations and boundary conditions are derived using the 
Hamilton’s principle. The Galerkin method is employed to 
discretize the governing partial differential equations. Tip 
tracking control algorithms for piezoelectric nanocantilever 
beam are developed, and the simulation results are presented 
and compared for the three proposed methods. 

2- Nonclassical Piezoelectricity Model
Based on size-dependent piezoelectricity, the strain energy 

of piezoelectric isotropic elastic materials with infinitesimal 
deformations occupying volume   is expressed as [1]:

where , ,ji ij jieσ µ  and ijκ  represent the components 
of the classical stress tensor, deformation strain tensor, 
couple-stress tensor, and curvature tensor, respectively [1]. 

iD  and iE  stand for electric displacement vector and the 
electric field, respectively [1]. The electric field and potential 
relationship is expressed by ,i iE = −Φ  [3]. 

Employing the Hamilton’s principle beside neglecting 
the axial inertia i.e. 
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, and supposing the dielectric 
charge density in the volume as 0eρ = , the equations of motion 
and the corresponding boundary conditions are obtained as: 
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Considering the reverse effect of a PNb, the electric potential 

field is assumed as ( ) ( ) ( ) ( )0, , cos ,
V t
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h
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The finite dimensional dynamic system will be derived 
through the conventional procedure of the Galerkin 
method beside considering the lateral deflection as 
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Fig. 2. Tip tracking of the PNb a) the state feedback control, b) 
the integral state feedback control and c) the Mamdani fuzzy 

control.

Fig. 3. Input voltage versus the PNb thickness 

Fig. 1. Integral state feedback control system
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3- Tip Tracking Control
The control objective is to drive the deflection of the tip 

point of the PNb to a desired oscillation. For the control design 
purpose, it is convenient to rewrite the Ordinary Differential 
Equation (ODE), i.e. Eq. (6), into a state space model. 

3- 1- State feedback control 
The goal is to affect the system specifically to show a 

desired behavior tracking at tip point. For tip tracking, two 
state feedback controllers are designed (state feedback control 
and integral state feedback control). Uncertainties in the 
plant model parameters or disturbances acting on the plant 
may create steady-state control errors. In order to solve this 
problem, one can use an integral state feedback control (Fig. 1).

3- 2- Fuzzy controller design
For a proportional fuzzy controller with the control error 

( ) ( ) ( )e t R t y t= −  and differentiation of error with respect to 
the time t  i.e. ( )e  as an input, with the variable ( )u t  as the 
output, one can obtain the rule base as:

IF e P=  and e P=  THEN u VLP=   and so on.

4- Results and Discussion
In this section, to verify the effectiveness of the proposed 

control algorithms, for a PNb made of 3BaTiO  numerical 
simulations are carried out. The lateral tip tracking of the PNb 
for a sinusoidal wave reference input with the pulse noise at 
time 5 are depicted in Fig. 2. 

As it can be seen the lateral tip tracking can be achieved. 
Also, it can be inferred that, the state feedback control is not 
a good robust controller as we expected, whereas the best 
controller is a fuzzy one. The effect of the beam thickness 
on the input voltage during the tracking time can be seen in 
Fig. 3. It can be deduced that by decreasing the nanobeam 

thickness, the input voltage decreases significantly.

5- Conclusions
The tip tracking of the reverse piezoelectric effect on the 

PNb based on size-dependent flexoelectric, was investigated. 
Hamilton’s principle was employed to derive the governing 
equations on the basis of the Euler-Bernoulli beam theory. 
The Galerkin method was implemented to discretize the 
equations of motion for the control design purposes. Three 
different controllers, the fuzzy controller, the integral state 
feedback and the state feedback controller, were analyzed. 
Regarding the executed analysis and simulation, it was 
demonstrated that the fuzzy controller is the best one. It was 
also discussed that to achieve the tracking in the presence 
of a noise, system needs a very large supply input voltage. 
This raised issue can have several different solutions, such 
as, decreasing nanobeam thickness as it was illustrated by 
simulation.
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