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Analytic Solution of Governing Equations of Heat and Moisture Transfer in a Capillary-
Porous Body with Dirichlet Boundary Condition
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ABSTRACT: In this research, a new analytical solution of one dimensional coupled equations of 
moisture and heat transfer in a capillary-porous body is presented. These equations are known as the 
Luikov system of equations. These partial differential equations are coupled and non-homogenous, that 
could be considered linear with the assumption that the coefficients of the equations are independent 
of space, time, and (every) dependent variables. In the innovative method of this survey, at the first, it 
is assumed that the system of equations is independent of each other, it has been resulted in a general 
answer for equations by using the method of separation of variables. Next, the special answers will be 
obtained by considering coupled equations and using the Laplace transform method. In this survey, it has 
been studied the effect of dimensionless coefficients such as Luikov number, Fourier number, and phase 
change coefficient on the rate of heat and moisture transfer. The result shows the coupling important 
effect of Luikov number on the rate of heat and moisture transfer of capillary-porous body equations. 
It has also resulted that the phase change coefficient has a minor effect on moisture transfer which was 
also reported in the study of Luikov.
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1. INTRODUCTION
Heat and moisture transfer have an important role in new 

knowledge and industries. The equations of heat and mass 
transfer in capillary porous materials are presented by Luikov 
[1]. These equations are non-homogeneous coupled partial 
differential equations that by considering some assumptions 
can be written in the linear form. A solution of these equations 
has presented by Luikov [2]. Mikhailov and Özisik [3] 
have solved the coupled equations using integral transform 
method. Lobo et al. [4], have shown the existence of complex 
eigenvalue for the system of equations. 

In the present study, in order to solve the unsteady one 
dimensional coupled system of equations, first, the general 
answers of separate uncoupled equations are obtained. In 
the novel method of the present study, separate eigenvalue 
for equations of the mass and the heat transfer are obtained. 
Using obtained different eigenvalues and applying the method 
of the separation of variables that leads to the flexibility of 
solutions, the general solution for the equations is obtained. 
Finally, considering obtained eigenvalues and eigenfunctions, 
the special solutions of the equations are obtained using the 
Laplace transform method. 

2. GOVERNING EQUATIONS
The equations of the heat and mass transfer in capillary 

porous bodies with ignoring the pressure difference effect of 
filtration motion can be written as [2]:
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The uncoupled equations are assumed as: 
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 Applying the method of separation of variables with 
different eigenvalues the solution of the equation can be 
easily provided as: 
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Now, by substituting these relations into Eqs. (1) 
and (2), two ordinary differential equations with respect 
to time are seen. Using the Laplace transform method 
for solving the obtained equations, and implementing 
boundary and initial conditions with considering 
orthogonality properties of equations, the solution of 
equations can be presented as: 
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The s1 and s2 are derived from the roots of the 
denominator of Eq. (9). 

4. Results and Discussions 

To validate the result and in consequence, the method 
presented in this research, our results are compared with 
Kulasiri and Woodhead [5] analytical solution. In the 
research of reference [5], a long wall with the thickness 
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3. SOLUTION METHOD
The uncoupled equations are assumed as:
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The s1 and s2 are derived from the roots of the denominator 
of Eq. (9).

4. RESULTS AND DISCUSSIONS
To validate the result and in consequence, the method 

presented in this research, our results are compared with 
Kulasiri and Woodhead [5] analytical solution. In the research 
of reference [5], a long wall with the thickness of x=0.1m 
is assumed to be in expose of constant ambient temperature 
and moisture content. The thermo-physical properties of the 
wall are taken as: r=2400 kJ/kg, am=3.0×10-6 m2/h, c=1284 
kJ/kgoC, k=0.12 W/moC, the boundary and initial temperature 
and moisture content are also assumed: Ti=10oC, Tambient=80oC, 
ui=0.5, uambient=0.12. Using 20 terms of the series of Eq. (8), 

the temperature of the porous media at x=0.05 with respect 
to time is shown in Fig. 1 and is compared with Kulasiri and 
Woodhead [5].

In the Fig. 2, it is shown that the phase change 
coefficient has lesser significance in the dynamics of heat 
and moisture profiles as also is mentioned in the reference 
[5]. The temperature profiles versus Fourier number 
(time) by considering the effect of Luikov number that 
represents the mass diffusion to heat transfer is depicted  

 

 

  

 

 

Fig. 1. Temperature verstime at x=0.05 

Fig. 2. The transient moisture content profile versus time for different phase change coefficient 
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different phase change coefficient

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Temperature distribution with respect to time for different Luikov number 

 

Fig. 3. Temperature distribution with respect to time for 
different Luikov number



H. Nazif, Amirkabir J. Mech. Eng., 52(2) (2020) 117-120, DOI: 10.22060/mej.2018.13372.5615

119

in Fig. 3. In the high Lu number that the moisture 
diffusion is dominated, the temperature distribution 
variation seems to be more uniform due to the presence 
of the moisture. However, for the lower Lu number, i.e. 
Lu<0.001, the coupling between the equations of heat and 
mass can be neglected according to the study of Mendes 
and Philippi [6].

5. CONCLUSIONS
The governing equations of the drying the porous 

materials have been solved analytically. The solutions were 
explored to show that diffusion effects cannot be ignored. 
The phase change has less importance in the vapor diffusion 
relative to liquid transfer when filtration phenomena due to 
pressure difference are ignored. 
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