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ABSTRACT: In this study, static and vibration analyses of cylindrical piezoelectric structures by 
means of superelements are targeted. In this regard, the cylindrical superelement is modified in order 
to be used in the analysis of hollow cylinders made of piezoelectric materials. At first, the cylindrical 
superelement, which was previously defined in the literature, is introduced. Next, the calculation of 
stiffness and mass matrices of piezoelectric structures in finite element analysis is briefly reviewed, 
and then, a piezoelectric cylindrical superelement is developed. In order to verify the accuracy of the 
defined element, two case studies are analyzed by means of the defined superelement, and the results are 
compared with the ones obtained by a commercial finite element software. In the end, the piezoelectric 
superelement is further modified to be used in static and vibration analyses of hollow cylinders which 
are made of functionally graded piezoelectric materials. Also, in this case, two classical problems are 
analyzed with the defined element. In both piezoelectric and functionally graded piezoelectric material 
cases, the results show appropriate compatibility with the ones obtained by the conventional elements.
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1. INTRODUCTION
Finite Element Method (FEM) is now widely used in

academia and industry in order to analyze complicated 
engineering problems. In this method, a system in the first 
step should be discretized into the number of elements, which 
is called meshing. Based on the FEM, the accuracy of results 
is improved if the number of elements increased. However, it 
also increases the computation cost. Alternatively, researchers 
have tried to propose numerical methods which do not need 
meshing or at least need a lower number of elements [1, 2]. 
For example, in the automotive and aircraft industries, the 
sub-structuring method is frequently used. In this method, 
first, a structure with a complex shape has meshed, and then, 
by reducing the size of the assembled stiffness and mass 
matrices, a new element is defined which only includes 
nodes at boundaries [3-5]. As a result, a large element with 
a substantially reduced number of nodes and Degrees-Of-
Freedom (DOFs) is created. Although this method reduces 
the computation time substantially, it still needs meshing. 

The superelement method is another approach with 
which a structure can be analyzed efficiently with a smaller 
number of elements. In this method, an element with a known 
geometry is defined and customized based on the demanded 
analysis. For example, Ahmadian et al. [6] introduced a 
cylindrical superelement which can be used in the structural 
analysis of cylindrical laminates. Later, Taghvaeipour et 
al. [7] modified the element formulation to be used in the 

analysis of functionally graded thick vessels. 
This study aims at the definition of a cylindrical 

superelement which can be incorporated in static and 
vibration analysis of piezoelectric sensors/actuators. In this 
regard, the superelement which was first defined in Ref. [6] is 
briefly introduced, and then, the stiffness and mass matrices of 
a cylindrical piezoelectric superelement are derived. Finally, 
by using the defined element, some examples are solved and 
the results are verified by a commercial FE package.  

2. THE CYLINDRICAL SUPERELEMENT FOR
PIEZOELECTRIC MATERIALS

The geometry of the cylindrical superelement is depicted 
in Fig. 1. As it is shown, this element with the inner radius of 

Fig. 1: The Cylindrical superelement

Fig. 1: The Cylindrical superelement
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1r , the outer radius of 
2r  and the length of 2L has 16 nodes. For 

the sake of simplicity, and based on the cylindrical geometry 
of element new local coordinates are defined as follows, 
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The DOFs are interpolated inside the element by means 
of 16 shape functions which are formed by trigonometric 
functions, along the radial direction, and polynomial 
functions along the radial and longitudinal directions [6]. 
For an electromechanical analysis, each node possesses four 
DOFs, and hence, the nodal vector of the i’th node is defined 
as:

[ ]Ti
ir i iz iu u uα φ=q (3)

In piezoelectric materials, the governing equations are 
summarized as follows: 

{ } [ ]{ } [ ] { }E TT c S e E= −
(4)

{ } [ ]{ } [ ]{ }SD e S Eε= +

where { }T is denoting the stress vector, { }S is the
strain vector, { }E is the electrical field, { }D is the electrical 
displacement, [ ]Sε is the matrix of elastic coefficients while the 
electrical field is constant, and [ ]e is the matrix of piezoelectric 
coupling coefficients. By resorting to Hamilton’s principle 
and approximation solution, the following matrix equations 
are obtained within each element,

[ ]{ } [ ]{ } [ ]{ } { }i uu i u i iM u K u K fΦ+ + Φ =


 (5)

[ ]{ } [ ]{ } { }u i i iK u K gΦ ΦΦ+ Φ =   (6)

The corresponding formulations for the stiffness and mass 
matrices and the derivations are presented in Ref. [8]. 

3. THE CASE STUDIES
The First case study is a clamped-free hollow cylinder

with the ratios of / 8iL r = , / 0.5ih r =  and the thickness of 
0.01h = m. The cylinder is made of PZT-4 which is polarized 

along its length. The elongation of the foregoing structure 

under the following boundary conditions are obtained by 
the superelements, and brick elements in a FE commercial 
software. The results are compared in Table 1. 

100V 0
0

z
z L

Φ = → =

Φ = → =
(7)

In the second case study, a hollow cylinder with the 
ratios of / 20iL r = , / 2ih r =  and the thickness of 0.02h =  
m is considered. Likewise, the cylinder is clamped-free 
and made of PZT-4. In the case of short-circuit boundary 
condition, the first two bending natural frequencies obtained 
by the superelement and the brick elements are compared in 
Table 2. 

4. CONCLUSIONS
In this study, a cylindrical superelement was introduced

which can be used in the structural analysis of hollow 
cylinder sensors/actuators. The element is based on the 
geometry and shape functions which were previously defined 
in the literature, and here, it is developed to be used in the 
case of piezoelectric hollow cylinders. In the end, static and 
vibration analysis were conducted on case studies by means 
of superelements. The results show proper accuracy compared 
with the ones obtained by brick elements in a commercial FE 
software. 
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