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Prediction and Control of Chaos in Nonlinear Rectangular Micro-Plate on the Elastic 
Foundation
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ABSTRACT: In this study, nonlinear dynamics of non-classical Kirchhoff microplate is analyzed 
and chaotic behavior is predicted and controlled by designing the robust adaptive fuzzy controller. 
Virtual displacement principle is employed to derive the governing equation of micro-plate resting 
on a nonlinear elastic foundation. In the governing equation, von-Karman geometric nonlinearity 
and couple stress theory are considered. Then eigenvalue governing equation is solved for fully 
simply supported boundary conditions and results are validated. In the next step, considering 
harmonic excitation of the first mode, the micro-plate forced vibration equation is derived using 
the Galerkin method. Regardless of modal interaction, the chaos threshold is then investigated. 
Homoclinic orbits of the unperturbed system are plotted and stable and unstable manifold 
transversely cut that is criteria to predict chaos according to Melnikov’s method are studied. 
Using the maximum Lyapunov exponents numerical method, size-dependent chaos is also locally 
identified. Phase portrait, Poincare mapping and time response are plotted for different values of 
size ratios and the significant effect of size on the chaotic behavior of micro-plats is presented. 
Subsequently, designing the robust adaptive fuzzy controllers, chaotic vibrations are completely 
eliminated from the system and the robust adaptive fuzzy controller is introduced as an effective 
method for controlling chaos in these systems.
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1. INTRODUCTION
In the field of nanotechnology, mention to long-range

applications of Micro-Nano-Electromechanical Systems 
(M-NEMS) there are massive engineering papers dedicated to 
studying these systems. 

Reducing the size of M-NEMS in the scale of micro and 
nano causing high natural frequency makes more sensitivity 
and performance of M-NEMS in the role of sensors and other 
applications that is desired by the designer. The high frequency 
of systems hence needs a higher energy level in excitation 
yielding more nonlinear behavior such as frequency bending, 
dynamic jump and chaotic vibration. In conclusion, it is essential 
to study nonlinear dynamics and chaos in M-NEMS that is the 
aim of this paper.

The researchers have presented the chaotic behavior of the 
classical structure in numerous papers. Awrejcewicz et al. [1-3] 
studied the route of transition into chaos in plates and shells on 
triple articles.

The essence of heteroclinic loops and extremely complicated 
dynamical behavior of plates as chaotic vibration, symmetry 
breaking, and Smale horseshoes phenomena are also studied 
before [4, 5].

In the referred articles, classical elasticity theories are used 
to analysis of structures, whereas the classical theories don’t 

valid on the scale of micro and nano illustrated by experimental 
research [6]. The modified couple stress theory as one of the 
none-classical elasticity theories is widely used to invest micro-
structures [7, 8]. The forced vibration of Kirchhoff’s nonlinear 
microplate was numerically studied based on The modified 
couple stress theory by Ghayesh and Farokhi [7]. In other paper, 
they hence did a similar search on imperfect microplate [8].

In this paper, the governing equations on the nonlinear 
dynamics of the microplate resting on the nonlinear elastic 
foundation are derived based on the coupling stress theory 
and the size-dependent chaotic behavior of the microplate 
will be studied using numerical and analytical methods. 
Then, the chaotic vibration of microplate will be controlled. 

2. METHODOLOGY
The proposed system contains a rectangular microplate

with dimensions b a×  and cross-section height h resting on 
nonlinear elastic foundation with nonlinear stiffness nlk ,  
linear stiffness lk  and shear stiffness sk  that is made by 
epoxy ( 1.44Gpa,E = 0.38ν = ) and l is length scale parameter. 
The nonclassical material constant in modified couple stress 
theory which has been measured by experimental test [6].

The governing equation of Kirchhoff’s microplate with 
von-Karman geometric nonlinearity [9] is derived based on 
modified couple stress theory [10] via virtual displacement 
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principle as the nondimensional equation:
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Using variables separation, dynamic deflection of a 
microplate can be represented as ( ) ( ) ( )‚ ‚ ‚w X Y t X Y q tϕ= , 
where ( )q t and ( )‚X Yϕ  is time part and space mode shapes, 
respectively. Substituting dynamic deflection equation yield 
to eigenvalue equation. After solving this equation, natural 
frequency and linear mode shapes are obtained.

In order to analyze chaos in a microplate, Galerkin 
method is employed using the first linear mode shape of 
the microplate. This way, the nonlinear equation in the state 
space form can be expressed as:

, chaosChaos
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Where where   is the small scale parameter. The
unperturbed system will be obtained by setting 0  . The 
homoclinic orbits of the unperturbed system is are used
by Melnikov's method and size dependent chaos
threshold function is then yielded as:
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Results and Discussion
The size size-dependent chaos threshold is plotted for
different values of size ratio (h/l) in Fig. 1. Accordingly,
if the value of size ratio (h/l) changes to micro scale beam,
the chaos threshold will be increased dramatically.
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threshold will be increased dramatically.

In Figs. 2 and 3, Lyapunov exponents and phase portrait 
of the microplate is respectively depicted for tow values of 
size ratio (h/l). Mention to these figures, the microplate size 
has a significant effect on chaotic behavior.

Next, the chaotic vibration of the nonclassical microplate 
is controlled by designing robust adaptive fuzzy controller 
[11]. In Fig. 4, time response of microplate before and after 
activating controller is illustrated. It can be observed the 
robust adaptive fuzzy controller is an effective controlling 
method for nonclassical microplate.

Fig. 1. Homoclinic bifurcation diagram and chaos threshold of the system for different values of size ratio (h/l)
Fig. 1. Homoclinic bifurcation diagram and chaos threshold of 

the system for different values of size ratio (h/l)

Fig. 2. Lyapunov exponents of the system for different values of size ratio (h/l)
Fig. 2. Lyapunov exponents of the system for different values of 

size ratio (h/l)

 

Fig. 3. Phase portrait of the microplate for different values of size ratio (h/l)

Fig. 3. Phase portrait of the microplate for different values of 
size ratio (h/l)
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Fig. 4. Time history response of the microplate with the controller before and after activating controller at 170t sFig. 4. Time history response of the microplate with the controller before and after activating controller at 170=t s

4. CONCLUSIONS
In this paper, the size-dependent chaotic behavior of the

microplate was studied based on the coupling stress theory 
using numerical and analytical methods. The homoclinic 
orbits equations of the unperturbed system were obtained. 
To investigate the homoclinic bifurcation of the system, 
the Melnikov method was used. The relationship between 
the critical force of the chaos threshold and microplate size 
has been predicted by Melnikov method. According to the 
Melnikov analysis, the scale of the microplate has a significant 
effect on the critical force of chaos threshold. Subsequently, 
the largest Lyapunov exponent as a numerical criterion was 
used to evaluate the sensitivity to the initial conditions and 
predictability of the system and the identification of chaos 
was performed for different size scale of the microplate. 
Results showed that in smaller size ratios, the largest 
Lyapunov exponent changed, thus the chaotic behavior of 
system also varied. Next, Phase portrait, Poincaré section 
and time response for different values of the size ratio were 
plotted and the impressive size effect has been displayed in 
the chaotic behavior of microplate. 

After the chaos analysis, designing robust adaptive fuzzy 
controller, chaotic vibrations of the microplate are completely 
suppressed and the robust adaptive fuzzy controller is 
introduced as a powerful method of chaos controlling in 
nanoelectromechanical systems.
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