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ABSTRACT: This paper examines the various methods of applying no-slip boundary condition on a 
fixed and rotary cylinder in the lattice Boltzmann framework. For this purpose, five methods of bounce-
back, linear and quadratic method of Yu and the linear and quadratic method of Bouzidi are chosen. 
The main challenge in all of these methods is how to calculate and interpolate the unknown distribution 
functions at the points around the boundary points. Results show that in the stable conditions (Re=20 
and Re=40), the maximum error of calculation of the separation angle is 6.7 % and it is related to the 
bounce-back method, while in the stable conditions, a significant difference cannot be seen between the 
bounce-back and other methods. Also, the linear method of Bouzidi has the most error in calculating 
the separation length (6% for Re=20 and 8.82 % for Re=40). By increasing the Reynolds number and 
increasing the rotational velocity, a difference in the lift coefficient in the early times, t*> 7.78 grows 
for the conditions of k=0.2 and Re=200, between the bounce-back and other methods, however with 
increasing time, this difference reduces, whereas the three methods of linear Yu, linear Bouzidi and 
quadratic Bouzidi, continue to produce similar results.
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1.  INTRODUCTION
In the field of numerical simulations, several attempts have 

been made to detect the curvilinear boundaries and preventing 
its step-like behavior. One is to map the curvilinear coordinates 
into the cartesian coordinate. However, the implementation 
of curved boundaries in the cartesian coordinate is more 
widely used because of the simplicity of the application 
and the lack of limitation to the specific coordinate system. 
Filippova and Hänel [1], were able to model curve boundaries 
in the cartesian system using the bounce-back rule and the 
idea of extrapolating the distribution functions. Mei et al. [2], 
developed the method of Filippova and Hänel and partially 
solved the problem of instability. 

Since there is no comprehensive study on the comparison 
of different methods in applying the no-slip boundary 
conditions in curved boundaries, especially in rotating 
conditions, five methods of Bounce-Back (BB), linear Yu-
Mei-Luo-Shyy (LYMLS), Quadratic Yu-Mei-Luo-Shyy 
(QYMLS), linear Bouzidi-Firdaouss-Lallemand (LBFL) 
and quadratic Bouzidi-Firdaouss-Lallemand (LBFL) are 
selected to compare and find their hydrodynamic behavior. 
Accordingly, a FORTRAN code is developed to evaluate the 
hydrodynamic parameters of the flow, such as the separation 
angle, separation length, and the drag and lift coefficients.

2. IMPLEMENTATION OF CURVED BOUNDARY 
2.1. Bounce-back method

In this method, rl stands for the position of the fluid near 

the boundary, rp represents the point inside the cylinder near 
the boundary and rw shows the point between them, located 
on the curved surface. According to the bounce-back rule, the 
collision step on the curved surface is as follows [3]:
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where α  is opposite to α and α is a direction toward the 
curved boundary.

2.2. Method of Bouzidi
The exact location of the solid surface is obtained by the 

following ratio:
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The linear interpolation of BFL is defined as follows:
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For 5.0>∆w :
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Instead of using the linear interpolation method, we can 
use the second-order interpolation to find the distribution 
functions [4].

2.3. Method of Yu
Linear interpolation for finding distribution functions in 

the YMLS method is as follows [5]:
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where the amount of ),( ttrf l ∆+α could be evaluated by 
the second-degree interpolation as follows:
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Also, the amount of force which acts on the cylinder can 
be calculated as follows [6]:
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3.  RESULTS AND DISCUSSION
3.1. Fixed cylinder

The comparison between values of the drag coefficient Cd, 
the ratio of the vortex length to the diameter L/D, and the 
angle of separation θ in Re=20 are reported and compared 
with the available numerical results in Table 1. According to 
Table 1, the BB method in calculating the angle of separation 
θ and the LBFL method in calculating the L/D values lead 
to 7.6% and 6% error respect to the Finite Element Method 
(FEM), respectively. Table 1 shows the conditions that led to 
the divergence of QBFL and QYMLS with the QBFL1 and 
QYMLS1 expressions. These two methods converge with 
larger computational domain and an increase in the single 
release time. In this situation, the two QBFL2 and QYMLS2 

methods converge to the values given in Table 1.

3.2. Rotating cylinder
In this section, the values of the drag Cd and the lift Cl 

coefficients in the Re=200 have been reported to examine the 
behavior of the boundary conditions of BB, LYMLS, LBFL 
and QBFL in the fixed and rotating cylinders. It should be 
noted that the results of the QYMLS method have not been 
presented due to non-convergence in the problem conditions 
(selection of parameters U, D and τ). Table 2 shows the results 
for / 0k R U= Ω = . Since for k=0 the coefficients of the drag 
and lift are oscillating, hence, the maximum and minimum 
values of these values are reported. In order to compare the 
behavior of boundary conditions, the LYMLS method was 
selected as the base method and the error of each methods is 
measured and reported compared to this method. 

Now, changes in the drag coefficients for the conditions 
of k=0.2 and Re=200 are shown in Figs. 1 and 2, respectively. 
By comparing the results, it is seen that in the early times, 
t*<7.78, differences between BB results with the other three 
methods are clear, but with increasing time, this difference is 
reduced.

4.  CONCLUSIONS 
Based on the simulations, the following results can be 

expressed:
•  In the case where the cylinder is fixed and the flow 

has a small Reynolds number, using the bounce-back method, 
in spite of the simplicity of the operation, has an acceptable 
accuracy in calculating and predicting the drag coefficient; 
so that the need to apply methods with higher precision or 

error% θ error% L/D error% dC Method 
7.6 40.36 3 0.97 1.2 2.070 BB 
--- × --- × --- × QYMLS1 

2.06 42.18 2.13 0.96 1.12 2.068 QYMLS2 
3 42.3 1.1 0.95 1 2.065 LYMLS 
--- × --- × --- × QBFL1 

1.37 43.1 1.06 0.93 1.27 2.071 QBFL2 
0.3 43.86 6 1 1.4 2.075 LBFL 
--- 43.7 --- 0.94 --- 2.045 FEM [7]  

 
Table 1. Comparison of the Cd, L/D, and θ with respect to the FEM for Re=20 in a fixed condition 

Table 1. Comparison of the Cd, L/D, and θ with respect to the FEM for Re=20 in a fixed condition

Table 2. maximum and minimum values for Cd and Cl for a fixed cylinder, k=0 at Re=200 
 

QBFL LBFL LYMLS BB  
1.315 1.329 1.329 1.464 d, maxC 

1.05 0.0 0.0 10.16  Cd, maxE
(%) 

1.102 1.12 1.116 1.24 d, minC 
1.25 0.36 0.0 11.11 (%) Cd, minE 
0.578 0.585 0.591 0.716 l, maxC 
2.2 1.02 0.0 21.15 (%) Cl, maxE 

-0.562 -0.576 -0.565 -0.712 l, minC 
0.53 1.95 0.0 26.06 (%) Cl, minE 

 

Table 2. maximum and minimum values for Cd and Cl for a 
fixed cylinder, k=0 at Re=200
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Fig. 1: Variation of drag coefficient for a rotating 

cylinder at k=0.2 and Re=200  
  

Fig. 1: Variation of drag coefficient for a rotating cylinder at 
k=0.2 and Re=200

 
Fig. 2: Variation of lift coefficient for a rotating 

cylinder at k=0.2 and Re=200  
 

Fig. 2: Variation of lift coefficient for a rotating cylinder at 
k=0.2 and Re=200

methods with curvature boundary capability is neglected.
• The BB method has a big error in calculating the angle of 

separation θ and the LBFL method overshoots in calculating 
the L/D ratio. So, in the same conditions they become 
divergent compared to the other three methods.
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