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ABSTRACT: Cable-driven manipulators are a generation of parallel cinematic chain robots 
which provide important features including wide workspace and cost-effective high speed 
operations. However, due to wideness of the workspace and the flexibility of the cables, they 
are susceptible to unwanted vibrations which reduce their precision. Therefore, determination 
of velocity limits in the operation workspace is of high importance. In this study, stability 
analysis and critical velocities of a four cable plane robot are considered. Governing equations 
of the system are extracted by use of finite element method and employing variable length 
element. The characteristic coefficients of the extracted equations are nonlinear and velocity 
dependent ones. To provide a stability analysis, the equations are linearized assuming that the 
end-effector experiences quasi-static movements and the system is subjected to low amplitude 
vibrations. Afterward, the corresponding eigenvalue problem is analyzed and critical speeds 
of the robot in whole workspace domain are calculated. Furthermore, vibration frequencies 
corresponding to the unstable eigenvalues are determined. It is observed that system critical 
speed reduces as the end-effector moves to the boundaries of the workspace. In contrast to 
this, the frequency of the corresponding unstable modes increases as the end-effector moves 
to the borders of the workspace.
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1- Introduction
  Cable-Driven robots have a long history of industrial 

applications. Despite this, lots of their fundamental theoretical 
problems including kinematics, kinetics, and vibrations have 
been investigated in recent years. Due to longitudinal and 
bending flexibility of the cables, these robots are susceptible 
to unwanted vibrations in applications where large workspace, 
high velocity or considerable stiffness is demanded. The 
stiffness problem of cable robots has been investigated in 
many research works [1,2]. In this paper, the stability analysis 
of planar robot cables is studied to obtain the maximum 
allowable speeds. The governing equations of the system are 
obtained using variable length cable element. These equations 
are linearized considering the end-effector position, velocity, 
movement direction and the tensions of the stiffening cables. 
Then, the corresponding eigenvalue problem is solved to 
define natural frequencies and the critical velocity of the robot. 
According to our survey in the literature, the subject of the 
paper and the presented solution are novel.

2- Methodology
Fig. 1 shows a cable robot working in a vertical plane. The 
end effector is supported by four cables and its position and 
velocity are controlled through cables’ tension control. The 

end effector is considered as a point mass and the variable 
length cable element and finite element method presented 
by Du et al. [3] is employed to extract the corresponding 
dynamic equations. In this method, each cable is divided 
into a specific number of variable length similar elements. 
The main advantage of this method is that facilitates the 
employment of conventional finite element method and 
matrix assembling technics. Fig. 2 illustrates a variable length 
element of cross-sectional area A , non-extended length ( )l t
, modulus of elasticity E  and mass per unit length µ . Force 
vectors 

1 11 [ , ]=f T
x yf f  and 

2 22 [ , ]=f T
x yf f stand for element 

nodal forces and positions of the end nodes are presented by 
position vectors 1 1 1[ , ]=r Tx y and 2 2 2[ , ]=r Tx y . Moreover, 
global and local coordinates of a generic point P  on the 
element are presented by [ , ]=r Tx y  and s , respectively. 
Assuming that each element stays as a straight line during 
time, position vector of the generic point P  is expressed 
in terms of end-node position vectors and matrix of shape 
functions, as follows:

( , ) =r Nrjs t � (1)
where 1 2[ , ]=r r rT T T

j  and 1 2[ , ]=N I In n  represent the vector of 
nodal positions and a matrix of shape functions, respectively. 
Here, I denotes identity matrix and shape functions are set to 

1 1 / ( )= −n s l t  and 2 / ( )=n s l t .
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Using the presented parameter definitions, the kinetic energy of the 
element, its potential energy (including strain gravitational parts) and 
virtual work of applied forces are determined, respectively, as follows:

1

0

1 d
2
µ= ∫ r r 

TT s � (2)

1
2

3
0

1( )d
2

ε µ= −∫ r eTU EA g s � (3)

1 1 1 2 2 2δ δ µ δ µ δ= + +r f r r r r 

T T T
j jH v v

�
(4)

where g  is gravity constant, 3e  indicates the vertical unity 
vector and ε  represents the element’s longitudinal strain 
which is equal to:

11 ( 1)
2

ε = ∂ ∂ − ≈ ∂ ∂ −r r r rT T
s s s s

�
(5)

In addition, 1v  and 2v are lengths added to the element in 
its two ends and 1 2[ , ]=f f fT T T

j is a vector of element nodal 
forces. Using Eqs. (2) to (5), the dynamic equations of the 
element are derived using Hamilton method [3]:

+ + = +m r c r k r f f 

g
j j j j j j j j � (6)

where m j , c j  and k j  are mass, energy transfer, and 
stiffness matrices, respectively, and f g

j  represents element’s 
weight and they are functions of element length or length 
change rates. Using the conventional matrix assembling 
method and adding up the mass and the weight of the end 
effector to the corresponding node, the governing equation of 
the system is obtained:

+ + = +MR CR KR F F 

g � (7)

Fig. 1. The position and the velocity of the robot’s end-
effector controlled via cables’ tension control

Fig. 2. Cable element
In the above equation, the stiffness matrix is a function of 
nodal positions vector and therefore, it’s a nonlinear equation 
of nodal positions. We recall that mass, energy transfer and 
stiffness matrices are all functions of length change rates and 

therefore depend upon the end-effector velocity. Moreover, 
the end-effector is over-constrained. To solve this equation, 
we assume that the end-effector position is known and 
it moves with a specific constant velocity. In addition, the 
magnitude of cable tensions corresponding to cables no. 3 
and 4 are predefined. Now, we follow the below steps:
1. Assuming that the system is in static equilibrium, Eq. (7) is 
reduced to a nonlinear static equation:

, = +KR F Fg
t s � (8)

where ,Rt s defines the nodal positions at time t. This equation 
determines the position of cables intermediate nodes and the 
lengths of cable elements ( tl ).
2. Afterward, we assume that the end-effector moves to its 
next position quasi-statically while the cables experience no 
vibrations. The same calculations are performed to determine 
the nodal positions and element lengths corresponding to the 
new position. These results along with movement time dt 
obtain nodal velocities and rates of element length changes:

, ,( ) /+= −R R R

qs t dt s t s dt � (9)

( ) /+= −

t dt tl l l dt � (10)

where, ,=R Rqs t s .
3. To determine the acceleration of nodal displacements, the 
second order time derivative of element lengths and the cable 
tensions, again we refer to Eq. (7):

+ + = +MR CR KR F F 

g
qs qs qs � (11)

4. Now, we assume that the system undergoes a small-
amplitude vibrational displacement in addition to its quasi-
static movement:

= +R R Rqs d � (12)

Then, Using Eqs. (7) and (11), we get
′+ + =MR CR K R 0 

d d d � (13)

where ′K  is determined using the below equation:

( )= + =
′ = + −R R R R RK R K R R K R

qs d qs
d qs d qs � (14)

In general, ′K  is a nonlinear function of Rd . However, with 
the assumption of small amplitude vibrations and neglecting 
higher-order terms, it reduces to a constant matrix. This way, 
the linearization process is completed. More details and 
discussions about linearization and solution of Eq. (14) for 
a similar problem, are presented in Ref. [4]. Here, assuming 
that element elongations in lateral vibrations are negligible, 
we simplify Eq. (14), as follows:

=
′ = R RK K

qs
� (15)

5. Finally, a proportional damping is added to the energy 
transfer matrix and characteristic equation is solved to 
determine system’s eigenvalues. The system is stable 
whenever all the real parts of the eigenvalues are negative. 
Otherwise, it becomes unstable. 
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3- Results and Discussion
A robot cable with a rectangular workspace of 20m length 
and 10m width is considered. The center of the coordinates is 
set to the center of the rectangle. The end effector mass is 2kg 
and cable parameters are set to 125MPa=E , 20.5cmA = and 

0.4kg/mµ = . The end-effector solely displaces horizontally 
and its velocity is increased in steps of 0.1 m/s until it crosses 
the stability border for the first time. Since not all arbitrary 
values of cable tensions provide quasi-static movement 
conditions, we use the following equations to adjust the 
tensions of cables no. 3 and 4:

( )

( )

2 2
3

2 2
4

100 5 / 2 45

100 5 / 2 45

= + +

= − +

c

c

T x

T x

In the presented results, each cable is divided into 10 
elements which guaranty the convergence of the numerical 
calculations. To assess the validity of the presented results 
and the precision of numerical calculations, the critical 
velocity of a horizontally moving single cable is calculated 
and compared to that presented by Dehadrai et al. [5]. 
According to their numerical calculations, for all values of 
cable tensions, the critical velocity of a horizontally moving 
cable is equal to its wave speed ( . / ρ=InstV T A ). The 

instability velocity calculated here is 1.055 / ρT A which is 
close to the mentioned value. 

Fig. 3. Variations of critical speed versus end-effector’s position

Fig. 3 presents a critical velocity of the cable robot versus its 
end-effector position. It shows critical velocity is maximum 
when the end-effector is positioned in its workspace center 
and reduces as it moves to the borders. This is because some 
of the cable lengths increase as the end effector moves toward 
the borders and corresponding stiffness reduces considerably. 
These cables are more susceptible to unwanted vibrations and 
reduce system’s stability.  Despite instability velocities, the 
value of instability frequencies increases as the end-effector 
moves to the borders of its workspace.

4- Conclusion
Stability analysis of planar robot cables is considered. The 
nonlinear governing equations of the system are extracted 
using variable length cable element method. These equations 
are linearized by separating the movement parameters into 
quasi-static and small amplitude vibrational components. 
Using the quasi-static movements, the cables nodal positions, 
element lengths and the time derivatives of element lengths 
are estimated. Then, adding up the small amplitude vibrational 
movements to the quasi-static ones, the linearized dynamic 
equations of the system are derived and the instability 
velocities and frequencies are calculated. Numerical 
calculations show that system instability velocity reduces 
as the end effector approaches to its workspace borders. In 
contrast, instability frequency increases as the end effector 
move toward the borders and the corners of the workspace.
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