
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 52(9) (2020) 607-610
DOI: 10.22060/mej.2019.15355.6102  

Mathematical and Artificial Neural Network Simulation of NOx Selective Catalytic 
Reduction in a Monolithic Reactor

A. Farzi*, P. Khalati

Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran 

ABSTRACT: Worldwide development of industries and increase of energy consumption, have resulted 
fast increase in the emission of nitrogen oxides pollutants. Therefore, removal of nitrogen oxides is a 
very important issue. In this study, modeling and simulation of selective catalytic reduction of nitrogen 
oxides in a monolithic catalytic reactor at both steady-state and dynamic-state was performed. Steady-
state results showed that because of intense effect of temperature on nitrogen oxides conversion and 
competition of the main reaction with ammonia oxidation reaction, conversion of nitrogen oxides 
requires a catalytic filter in the range 300-350°C. Results showed that nitrogen oxide conversion 
increases with decreasing gas hourly space velocity and increasing inlet nitrogen oxide concentration. 
At dynamic-state, the effect of changes in some parameters including gas hourly space velocity, inlet 
nitrogen oxide concentration, and ammonia /nitrogen oxide ratio were investigated. Also, steady-state 
simulation of the process was performed using an artificial neural network and conversions of nitrogen 
oxides and ammonia were estimated as a function of gas hourly space velocity, reactor temperature, and 
nitrogen oxide concentration. 96 networks with different neurons and two different activation functions 
in hidden layer were trained. The resulted optimum network showed maximum mean square error of 
about 0.01 compared to mathematical modeling results indicating high performance of neural network 
for prediction of process performance.
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1. Introduction
Removal of Nitrogen Oxides (NOx) pollutants from 

high-temperature gases is necessary for thermal power 
plants, waste incinerators, and internal combustion engines. 
They are usually removed by catalytic NOx processes in 
electrostatic precipitators or in the filters. In some systems, 
NOx is reduced selectively using ammonia which is usually 
performed at low pressure [1]. In gas treatment, catalytic 
filters are manufactured for exhaust-emission pollutants, 
either for fossil-fuel power plants [2, 3], or for biomasses 
and combustion wastes [4]. When ceramic filter materials 
combine with intermediates, they exhibit high yields for 
the separation of particulate pollutants. They also have 
high catalytic activity to remove NOx, CO, and CHx. The 
filter must remove dust and soot from the exhaust and at the 
same time must have an active catalyst for the process of 
converting gaseous pollutants passing through the internal 
filter structure [5]. The reduction of NOx occurs according 
to the general reaction (Eq. (1) ), and simultaneously reaction 
(Eq. (2) ) occurs as a result of oxidation of Ammonia (NH3) 
with oxygen [1].

(1)3 2 2 24NO 4NH O 4N 6H O                                               
 
 
 
    
 
 
 

3 2 2 24NH 3O 2N 6H O     

(2)

3 2 2 24NO 4NH O 4N 6H O                                               
 
 
 
    
 
 
 

3 2 2 24NH 3O 2N 6H O     

NO2 formation is largely prevented because of the presence 
of water in the exhaust gas [6].

Tronconi [7], investigated experimentally interaction 
between chemical reaction kinetics and transport phenomena 
within monolithic reactors. The reaction of NOx was 
selected as benchmark and Rideal-type rate equations were 
assessed and their parameters were obtained. Also different 
geometries of honey-comb catalysts were studied. Lei et al. 
[8] performed modeling and simulation of Selective Catalytic 
Reduction (SCR) of NO in a honey-comb monolithic reactor 
using Computational Fluid Dynamics (CFD) method. They 
also used Rideal-type reaction rate equations for developing 
mathematical models. Their results showed that low inlet gas 
rate, high inlet gas temperature and high NH3/NO mole ratio 
increase NO conversion. Sharifian et al. [9] presented a One 
Dimensional (1D) dynamic model for simulation of NOx 
SCR on iron/zeolite catalyst within a channel equivalent to 
a diesel motor.

Faghihi and Shamekhi [10], developed a feed-forward 
Artificial Neural Network (ANN) model for simulation of *Corresponding author’s email: a-farzi@tabrizu.ac.ir
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NOx SCR process in order to optimize the ammonia inlet flow 
rate. They considered three input variables of temperature, 
and inlet Nitrogen Oxide (NO) and ammonia concentrations. 
Network outputs included NO conversion and NH3 outlet. 
They used 18 steady-state data series for training ANN, but did 
not find the optimum number of neurons in hidden layer and 
also didn’t investigate the effect of Gas Hourly Space Velocity 
(GHSV) on NO conversion. Izadkhah and Farzi [11], studied 
mathematical and ANN simulation of ethanol pyrolysis in a 
tubular reactor at steady-state. An optimal network with 10 
neurons in hidden layer was obtained, which had very small 
error with respect to the data of the mathematical simulation.
In this study, mathematical modeling and simulation of 
the selective catalytic reduction of NOx using ammonia is 
carried out in a tubular and monolithic plug-flow reactor 
in both steady-state and dynamic-state. For this purpose, 
component mass balance equations were written for both 
conditions. To validate the model, the empirical results of the 
work of Schaub et al. [1] were used. Dynamic modeling of 
process is a novelty of this research which has seldom been 
found in previous works. The ANN trained and used in the 
present work has an additional input of GHSV investigated 
by Faghihi and Shamekhi [10].

2. Methodology
For modeling of NOx SCR, a monolithic reactor containing 

honey-comb vanadia/titania filter catalyst was considered. 
Specifications of the catalytic filter are presented in Ref. 
[1]. A pseudo-homogeneous isothermal model was obtained 
at steady-state using component mass balance equations. 
Modeling assumptions include steady-state, isothermal plug-
flow reactor, one-dimensional concentration changes, and 
ideal gas law. The resulting ordinary differential equations 
were solved numerically using Runge-Kutta method. The 
effect of different parameters including GHSV and NO inlet 
concentration at fixed NH3/NO mole ratio was assessed and 
their optimal values were determined.

At the next step, dynamic modeling of the process was 
performed and Partial Differential Equations (PDEs) were 
obtained for concentration changes of NO and NH3 assuming 
1D isothermal plug-flow reactor. Steady-state results were 
used as initial conditions. The method of lines [12] was 
used for the numerical solution of PDEs. The effects of 
disturbances on different parameters such as GHSV, NO inlet 
concentration, and NH3/NO mole ratio on NO conversion 
were investigated. Finally, simulation of the process was 
done by training and then using a feed-forward ANN [11], 
based on the results of steady-state simulation with the 
mathematical model. In this work, NO and NH3 conversion 
were estimated by the network as a function of GHSV, inlet 
temperature, and NO inlet concentration. Modeling data were 
divided into three sets of training (60%), validation (15%), 
and test (15%) and the ANN was trained using Levenberg-
Marquardt back-propagation algorithm. Different topologies 
of ANN were examined and the optimum activation functions 
in hidden and output layers and also optimum number of 
neurons in hidden layer were obtained.

3. Results and Discussion
For validation of the mathematical model, simulations 

were performed at steady-state for GHSV of 11000 h-1, NO 
inlet concentration of 350 ppm and NH3/NO mole ratio of 
1 [1]. Maximum error was about 8% which is acceptable 
considering assumptions made for process modeling.

The effect of NO inlet concentration and temperature at 
fixed GHSV of 12000 h-1 and NH3/NO mole ratio of 1 on 
the conversion of NO is shown in Fig. 1. As can be seen, 
it increases with increase of NO inlet concentration. It is 
concluded that the optimum temperature for maximum NO 
conversion is 330°C for different NO concentrations.

For the assessment of the effect of GHSV on the transient 
response of the catalytic reactor, it was changed from 
16000 to 8000 h-1 at a constant temperature of 330°C. Inlet 
gas contained 7.6% O2, and 350 ppm NO and NH3. As it is 
evident from Fig. 2, NO and NH3 conversions are increased 
and reached new steady-state values after 0.2s which is due to 
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and linear activation functions for hidden and output layers, 
respectively, generated results with minimum deviation from 
mathematical modeling (Fig. 4). Also, the optimum number of 
neurons in the hidden layer was obtained as 16. The advantage 
of using trained ANN instead of mathematical model is that 
it does not need numerical solutions of differential equations 
and so generates outputs more rapidly. 

4. Conclusion
Based on the mathematical modeling and simulation 

at steady-state, it can be concluded that selective catalytic 
reduction of NO with NH3 in a catalytic filter must be 
performed in the temperature range of 300-350°C. Also, the 
simultaneous increase of NO and NH3 inlet concentrations or 
reduction of GHSV results in increasing of NO conversion. 
At dynamic-state, response of NO conversion to a step 
change on GHSV showed the secend-order trajectory and 
thus a proportional-integral controller could be used for 
process control. Response to a step change on simultaneous 
change of NO and NH3 inlet concentrations was auto-tuning 
which is due to the constant value of NH3/NO mole ratio. 
Finally, modeling of the system with a feed-forward ANN 
showed that the optimum trained network predicted outputs 
of mathematical simulation with maximum error of less than 
0.02 which shows high potential of ANNs for prediction of 
theoretical or empirical results and can be used instead of 
mathematical model.
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