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ABSTRACT: In this paper, the thermal behavior of living biological tissue during electromagnetic 
radiation thermal therapy is investigated. While a large number of studies devoted to the Fourier and 
non-Fourier heat transfer in living tissue are available for different boundary conditions, less analytical 
and semi-analytical works exist on the heat transfer in the multilayers tissue. In the present study, semi-
analytical Galerkin weighted residuals method is used to solve the dual-phase lag non-Fourier heat 
transfer equation in the multilayer tissue with a tumor placed in. The results show that considering a 
multilayer tissue with distinct thermophysical properties for each layer has a remarkable effect on the 
temperature distribution in the tissue, so that 2°C difference in tumor temperature after 1800 s is observed. 
The effect of the Vernot number on the temperature distribution shows that increasing the flux relaxation 
time results in reducing the temperature signal velocity and the tumor temperature. Lowering the skin 
surface temperature, decreases the high values of temperature and forces the maximum temperature 
region deeper into the tissue. Moreover, the reduction in the blood perfusion rate that occurs in the 
hypoxic tumors results in the increase of the tumors temperatures during the thermal therapy. 
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1- Introduction
The therapeutic treatments based on the transfer of thermal 

energy into or out of the body, using nonionizing radiation 
have been called thermal therapy. One of the main concerns 
in thermal therapy is to control the tissue temperature in order 
to prevent the burn and damage of the healthy tissue. Many 
numerical and analytical studies on the bioheat equation 
models have been presented by researchers for various 
boundary conditions to find the temperature distribution 
in the tissue during the heat treatment process. Xu et al. [1] 
derived exact solutions for different bioheat equations for the 
single-layer skin tissue. In multilayer case they used finite 
difference method. Gupta et al. [2] used the Galerkin method 
taking Brenstein polynomials as basis function to solve one-
dimensional Pennes bioheat equation. Kundu and Dewanjee 
[3] investigated the heat transfer in the single-layer skin 
tissue under different boundary conditions using the Laplace 
transform method. Askarizadeh and Ahmadikia [4] presented 
exact analytical solution of two-dimensional Pennes, thermal 
wave and Dual-Phase-Lag (DPL) bioheat transfer model. 
Verma et al. [5] studied two-dimensional heat transfer in a 
three-layered skin tissue. In the present study, the Galerkin 
weighted residuals method is employed to obtain a semi-
analytical solution for the dual-phase lag bioheat equation in a 
multilayer tissue during moderate hyperthermia and the results 
are compared with the one-layer tissue modeling results. The 
effects of the temperature of the skin surface, the relaxation 
times, and the blood perfusion rate on the thermal response of 

each layer of tissue are investigated.

2- Methodologyg
The one-dimensional multilayer tissue is considered with 

thickness L=0.05m. The tissue which is initially at the body 
temperature is heated by an electromagnetic radiation with a 432 
MHz antenna. The surface temperature of the skin is controlled 
by a cooling pad and therefore, the surface temperature of the skin 
remains constant during the treatment process. To investigate 
the effect of the cooling pad, the case without a cooling pad is 
also considered in this study. In the latter case, the convection 
boundary condition is considered on the surface of the skin. The 
dual-phase lag bioheat equation in the living tissues is:
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The initial conditions for Eq. (1) are:
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The boundary conditions for the case of constant temperatures 
are:

  0, ,sT t T  (3) 
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and for the case of convection on the surface of the skin are 
as follows:
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where sT  is the skin surface temperature and wT  referred to 
the body temperature that is normally equal to 37 OC. 

In this study, the Galerkin weighted residuals method is 
employed to obtain a semi-analytic, closed-form solution for this 
equation. In this method, the following approximate temperature 
profile is selected for the case of constant surface temperature:
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The approximate temperature profile for convection boundary 
condition is considered as:
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where the Ni (x) is given by:
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and Ci(t), i=0-n are the unknown coefficients. Substituting 
the appropriate temperature profile (Eq. (8) and (9)) into Eq. 
(1) results in a residual R. The unknown coefficients Ci (t) are 
obtained by equating the weighted integral of the residual to 
zero.
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 The weighting functions are Wi(x)=x(L-x)Ni(x), for the 
constant boundary conditions and Wi(x)=(L-x)Ni(x), for the 
convection boundary conditions. As it is observed from Eq. 
(8), the selected temperature profile satisfies the boundary 
conditions at the surface and the end of the tissue for all values of 
the unknown coefficients. In the case of convection on the skin 
surface, the weak form of the resulting integration of the Eq. (11) 
should be derived to apply boundary conditions (6). Applying 
the Galerkin weighted residuals methods and simplifying the 
results, yields a system of ordinary differential equations for 
the unknown coefficients Ci (t), i=0-n. The initial conditions for 
these equations are obtained by applying the Galerkin weighted 
residuals method to the initial conditions (2) and (3). The system 
of ordinary differential equations is solved using the fourth-
order Runge-Kutta method.

3- Results and Discussion
Fig. 1 shows the temperature distribution along with the 

tissue at different times for multilayer tissue.

 As it is observed from this figure, after 30 minutes of 
applying the electromagnetic radiation, the temperature of 
the tumor reaches 46°C for multilayer tissue. For one-layer 
tissue, the temperature of the analogous position reaches 
44°C. This difference arises due to different thermophysical 
properties of the different layers of the tissue. The effect of 
multilayer modeling of the tissue is more prominent in the 
dermis, subcutaneous and tumor layers. The high blood 

Fig. 2. Effect of the blood perfusion rate on tissue temperature 
distribution

Fig. 1. Temperature variation with time in multilayer tissue
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perfusion rate of the muscle layer causes lower temperatures 
in this region. The low thermal conductivity of the fat layer 
prevents heat diffusion and leads to higher temperatures in 
tumor region. Fig. 2 shows that the higher blood perfusion 
rate of the tumor predicts the lower temperature because the 
faster blood flow leads to the stronger convection heat loss 
through the blood.

4- Conclusions
The Galerkin weighted residuals method is used to obtain 

semi-analytical solutions for dual-phase lag equation in a 
multilayer living tissue during moderate hyperthermia. Two 
different boundary conditions, the constant temperature, and 
convection are considered. The results show that multilayer 
modeling of the tissue has a remarkable effect on the 
temperature of the different layers of the tissue, whereas 2°C 
difference is observed in the temperature of the tumor after 
1800 s of applying the electromagnetic radiation. The skin 
temperature can reach as high as 62°C. Increasing the flux 
relaxation time leads to decrease the thermal signal through 
the tissue. Increasing the blood perfusion rate decreases 
the temperature of the tumor. Increasing the flux relaxation 
time leads to decrease the thermal signal through the tissue. 

Increasing the blood perfusion rate decreases the temperature 
of the tumor.
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