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ABSTRACT: One of the most important and widely used tools to predict the behavior of sheets is 
the forming limit diagram. The Marciniak-Kuczynski model is one of the prediction methods, which 
can be combined with the phenomenological or the crystal plasticity equations to achieve the desired 
results. In this research, to predict the forming limit diagram, the direct combination of the Marciniak-
Kuczynski method with the crystal plasticity has been applied. The direct method is chosen due to the 
particular state of the mathematical equations associated with forming limit diagram. In this study a 
face-centered cubic polycrystalline metal has been used here, so, the Taylor method for the polycrystals 
can be used. Although this method ignores the interactions between the crystals to describe plasticity, 
it can also reduce the computational cost by simplifying the strain uniformity theory. In this study, 
polycrystal plasticity and dislocation methods have been merged in a new way. Only the hardening 
process is modeled based on the dislocation density and its modifications, and the entire analysis is 
based on the rate-dependent crystal plasticity. For the first time, the forming limit diagram is plotted to 
take into account the effect of dislocation density, and the results show that considering the effect of the 
dislocation density on the shear strength changes, the forming limit diagram formulation becomes nearer 
to the experimental values.
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1. Introduction
The crystal plasticity theory is able to detect micro-

mechanisms of macroscopic phenomena in plastic 
deformation considering the slip in single crystals or single 
grains.

Moreover, analyzing the slip strength during plastic 
deformation and suggesting an efficient model is one of the 
most important and difficult issues of the crystal plasticity 
theory. The activity of each slip system is affected by its own 
hardening and hardening of other systems. Work hardening 
models are classified as a physical theory of crystal plasticity 
and mathematical one. The first mathematical model of 
work hardening was presented by Taylor [1]. In physical 
models, the work hardening is based on the variables of 
the microstructure of the crystal, such as the Stacking Fault 
Energy (SFE) and the dislocation density in the slip systems. 
Orowan, Polanyi, and Taylor almost simultaneously realized 
that plastic deformation can be explained theoretically by 
means of dislocations. 

Taylor [1] found that the (atomic) flow stress is 
proportional to the square root of dislocation density [2]. 
Successful efforts have been made by Friedel [2] and Nabarro 
[3].

 Although individual dislocation techniques have been 
investigated thoroughly, describing the behavior of the 
group of dislocation without the aid of computer modeling 

is challenging. Moreover, computer simulation examines the 
participation of various mechanisms by eliminating other 
factors.

Recent studies have shown that two-dimensional discrete 
dislocation dynamics simulation can predict similar results 
with 3-Dimensional (3D) simulation in some cases [4, 5]. 
Both types of simulations have been used to study a wide 
range of phenomena, including plastic flow in thin sheets 
of Davoudi et al.[6]; Bauschinger effect, Shishvan et al. [7]; 
Danas and Deshpande [8], Davoudi et al. [9]; and the effect 
of dislocation acceleration [10]. 

Although many dislocation evolution equations have been 
developed [11], Nix and Lee [11] have found that for bulk 
materials, there are several ways to use a discrete method 
to describe a dislocation evolution. Askari [12] suggested a 
continuous model for dislocation evolution in thin films with 
several crystals and used a discrete model to validate the 
model.

In this paper, it is aimed to predict the forming limits 
of the aluminum alloy using the hardening model based on 
the dislocation density and its combination with the crystal 
plasticity. According to the considering poly-crystal, the 
Taylor model is used. 

2. Methodology
In this study, instead of using phenomenological models,

an internal state variable model which is complementary to *Corresponding author’s email: basti@guilan.ac.ir
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the work of Li et al. [13] is developed based on dislocation 
activities in each slip system in Faced-Centered Cubic (FCC) 
material.

Threshold stresses in any slip system have a primary 
contribution to the critical resolved shear stress, grain size, or 
hardening of the Hall Patch effect and hardening of the forest 
dislocation; namely: 

The dislocation accumulation during plastic slip is 
evaluated by an ordinary differential equation. This equation 
can be rewritten as follows:

On the right side of Eq. (2), Ks indicates dislocation 
storage and Kr   represents a dynamic recovery. These values 
are according to Ref. [14] and the references therein.

By referring to the relations of crystal plasticity Ref. [15] 
the main formulas for the solving algorithm are presented as
follows:

The strain increment in the system α   and the linear 
relationship for its determination during the time interval t∆   
are defined according to Eqs. (3) and (4). 

where, the subscript t represents the time and  0 1θ≤ ≤ . 
According to the rate depends on the shear stress and 

shear strength in the   slip system. Thus, using the Taylor 
expansion, one can write:

In this study, according to Eq. (1), the size of grains, the 
size of Burgers vector and the interaction matrix in shear 
strength changes are assumed constant during deformation. 
Therefore, the dislocation density is the only residual factor 
that is effective in the change of shear strength. Density 
variations are obtained through solving Eq. (2) which is a
nonlinear Bernoulli differential equation.

where  ,r sk kφ γ χ γ= = 
 and constant C is determined 

according to the initial value ρ  . The initial value of 
dislocation density for all graphs is 107 cm-2, except when
the density is mentioned. Finally, the equation is obtained for 

different values of  Tcr and Eq. (1) can be updated by putting 
this answer.

3. Results and Discussion
A set of 65 crystals or grains with a random distribution

is considered. The difference between the current solutions 
and the previous trend is in the use of two theories of slip 
resistance based on the total density of dislocations and the 
theory of variations in the density of statistical dislocations. 
To validate the results, the results are compared with the 
results of the Taylor method, the results of the self-consistent 
method proposed by Serenelli et al [16] and the experimental 
results. We define our method with TD (Taylor Dislocation) 
symbol. As shown in Fig. 1, experimental results are shown 
with a square mark. The results on the left side of the graph are 
better predicted by the recent method and the Taylor method 
and the self-consistent method in this area fails to provide 
the correct results. In the right-hand side of the graph, the 
results of the Self-Consistent (SC) method are closer to the 
experimental results and the new TD diagrams are closer to the 
SC method than the Taylor method. This indicates increasing 
the accuracy of our method compared to Taylor method. In 
fact, the latter method provides a significant improvement 
in Taylor predictions and in terms of computational cost, it 
is much better than self-consistent method. However, due to 
simplifications such as eliminating the effect of the density 
of geometry necessary dislocations, the results are far from 
experiments but they are acceptable compared to the two 
existing Taylor and self-consistent methods.

In Fig. 2, the experimental results of AA5182-O are 
marked with a square mark. On the left side of this diagram, 
the results of the TD method are closer to the test results 
with two other methods. In fact, the self-consistent method, 
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Fig. 1. Comparison between the forming limit diagrams obtained 
by Taylor-model, the self-consistent method of Serenelli et al. [16] 

and Taylor method based on dislocation

 

Fig. 1: Comparison between the forming limit diagrams obtained by Taylor-model, the self-consistent method of Serenelli et al.
[16] and Taylor method based on dislocation

Fig. 2: Comparison of forming limit diagrams obtained by the self-consistent method, Taylor method and proposed method with 
the experimental results
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despite being more precise in many cases, does not predict 
the exact location of the FLD on the left side.

4. Conclusions
In this paper, a model with the combination of the m-k

method with Taylor’s polycrystalline analysis and the effects 
of dislocations and their changes during deformation is 
presented. Using this model, the aluminum forming limit 
diagrams are predicted. By comparing the obtained results of 
predicting the forming limit diagram with the experimental 
results and also the results of the Taylor method and the self-
consistent method, the following findings are achieved. 

• The TD method, by considering the effect of statistical
dislocation density, attempts to improve the Taylor method 
for predicting the behavior of polycrystals, which has greatly 
improved the results of the Taylor method.

• The left side of the graph of the prediction of Taylor-
method is better than the self-consistent method. The TD 
method by considering the dislocation density has improved 
the Taylor method either on the right or on the left side of 
the diagram. Consequently, the left-hand side of the graphs 
is very close to the experimental results. The right side of the 
graphs is also close to the self-consistent graphs.

• The accuracy of the results enhances as the number of
grains and the number of grain orientations increase.
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