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ABSTRACT: In this research, the deformation behavior of the commercial ready to press 92 percent 
alumina powder has been investigated using the modified Drucker-Prager cap model. This model is a 
multi-surface yield model for the description of the plastic behavior of powders during consolidation. To 
this end, parameters of the model as functions of density were obtained by means of experiments. The 
constants of the shear failure yield surface were obtained based on simple diametric and axial compressive 
loading cylindrical specimens with various relative densities. For determining the remaining parameters 
of the model, an instrumented die fitted with strain gage and load cell was designed and fabricated. 
Parameters of the cap surface were achieved based on the uniaxial die compaction experiments. Based 
on consecutive loading-unloading tests using the instrumented die, the friction coefficient and elastic 
moduli were derived from loading and unloading phases respectively. For finite element simulation 
of the uniaxial compaction, density-dependent material parameters were employed in ABAQUS. The 
variations of density were taken into account using a user-defined filed variable subroutine. Simulation 
results prove a very good agreement with the experimental counterpart.
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1. Introduction
One of the popular techniques for forming ceramic powders 

is die compaction. The complex behavior of powders during 
compaction impacts the properties of the final components. 
Therefore, it is essential to predict the flow of powder during 
compaction. This can be achieved by employing proper 
constitutive models in finite element analyses. Several 
constitutive models including Cam-Clay [1] and Modified 
Drucker-Prager CAP (MDPC) [2] for describing porous 
media could be found in the literature. The calibration of the 
parameter of these constitutive models for a specific material 
is a major issue. Particularly for MDPC model, special 
triaxial test instruments are required. Therefore, combining 
simple axial test data obtained from an instrumented die with 
optimization techniques can result in a more cost-effective 
method for calibration of the model [3-6]. In this paper the 
density-dependent parameters of MDPC model for alumina 
powder KMS92 (Martinswerk, GmbH) have been obtained 
through conducting diametral and axial compression tests and 
multiple-step uniaxial tests performed using an instrumented 
die. The elastic moduli of the powder at different densities 
were determined from the unloading part of the multiple-step 
uniaxial compaction data. In order to consider the density 
variations in the finite element simulation with ABAQUS, 
the USDFLD subroutine was implemented in the analyses. 
Finally, the experimental and simulation load-displacement 

curves were compared. 

2. Finite Element Model
The MDPC yield surfaces in p-q plane are shown in Fig.

1. Here p is hydrostatic pressure and q is effective stress.

The equations of these surfaces are given in Eqs. (1) to (3).
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Fig. 1. Yield surface of modified Drucker-Prager CAP (MDPC) 
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Fig. 2. Finite element model used for simulation of the multiple-step uniaxial compaction process
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here β is friction angle, d is cohesion, R is eccentricity, 
α is a small constant, pa is evolution parameter and pb is 
hydrostatic yield stress. For calibration of the MDPC model 
these parameters must be determined. For determination of β 
and d, diametral and axial compression tests. The parameters 
related to the cap surface, namely R and pa, are determined 
using an instrumented die. In addition the elastic moduli of 
the material are determined based on the unloading part of the 
multiple-step uniaxial compression test.

The uniaxial compaction model is shown in Fig. 2. The 
analyses were performed using ABAQUS/Standard solver. In 
order to consider the density variations, USDFLD subroutine 
was implemented in the analyses. 

3. Experimental Procedure
For determination of β and d, diametral and axial

compression tests were performed as shown in Fig. 3. The 
samples are one gram disks of KMS92 were compacted at 
different densities. In addition, the setup for instrumented die 
compaction is given in Fig. 4. 

4. Results and Discussions
After the determination of the model parameters, in order

to make sure about the accuracy of model calibration, the 
uniaxial compaction test was simulated in ABAQUS. The 
load-displacement curves obtained from experiment and 
simulation are compared in Fig. 5. The figure represents a very 
good correlation between the two sets of data. Therefore, it can 

be stated that the accuracy of the calibration is desirable. The 
distribution of density of the green compact can be estimated 
based on the analysis results. Fig. 6 depicts the distribution 
of density and stress components after removal of the upper 
punch. From the figure, it is clear that regions near the upper 
punch and at the periphery of the sample acquired maximum 
density. In addition, the compact is still under stress and after 
removal from die, its diameter will increase. 

5. Conclusions
The parameters of the modified Drucker-Prager cap model 
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for alumina powder KMS92 were determined using simple 
diametral and axial compression and uniaxial compaction 
tests in an instrumented die. The results demonstrate that the 
method can give accurate values for model parameters.
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