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ABSTRACT: Development of a precise mathematical model of piezoelectric patches plays an important 
role in comprehending their operational mechanisms as well as developing new techniques based on their 
coupled electro-mechanical behavior. While, high computational cost of available numerical methods 
which are able to simulate vibrational behavior of piezoelectric patches, especially at high frequencies, 
is considered as a serious challenge in this area. The purpose of this study is to use a novel semi-
analytical method, called Scaled Boundary Finite Element Method, to analyze free and forced vibration 
of piezoelectric patches. In order to evaluate the accuracy of this method in modeling of different 
problems occurred in structural health monitoring and fracture mechanics, the free and forced vibration 
of a piezoelectric patch, a piezoelectric patch attached to an aluminum structure, a piezoelectric patch 
with a circular hole and a cracked piezoelectric patch was analyzed as four case studies. Comparison of 
convergence rate of scaled boundary finite element method and finite element method indicates that the 
former provides exact results with much less degrees of freedom. In addition, proper matching of results 
demonstrates the capability of scaled boundary finite element method to model a variety of problems 
accurately at a very low computational cost.

Review History:

Received: 17 Mar. 2019
Revised: 7 May. 2019
Accepted: 8 Jul. 2019
Available Online: 13 Aug. 2019

Keywords:

Scaled boundary finite element 

method

Electro-mechanical coupled field

Vibration

Piezoelectric patch

Finite element method

857

1- Introduction
Recently, employing miniaturized piezoelectric patches in

various branches of science and engineering such as structural 
health monitoring, has become widespread due to their unique 
characteristics including: simultaneous sensing/actuating 
capability, light weight high strength, non-intrusivity and low 
cost. Developing an accurate mathematical model to describe 
the behavior of piezoelectric patches, plays an important role 
in comprehending their coupled electromechanical behavior. 
So far, several numerical methods have been used to analyze 
vibration of piezoelectric patches such as: Finite Difference 
Method (FDM), Boundary Element Method (BEM), Finite 
Element Method (FEM), and Spectral Finite Element 
Method (SFEM) [1-3]. Despite some specific advantages of 
these methods, they confronts practical constraints dealing 
with multi-material systems, discontinuous configurations 
and complex process of mesh size tuning for simulation of 
high frequency vibrations which leads to overwhelming 
computational cost [1, 3-4].

Scaled Boundary Finite Element Method (SBFEM) is a 
relatively novel numerical method to solve governing partial 
differential equations of a variety of engineering systems [5]. 
In this method, the intended domain is first split into non-
overlapping subdomains (sometimes called S-elements) to be 
able to sight each point on their boundaries directly known 
as scaling requirements. Discretizing only the boundary of 
each S-element as in BEM and treating the problem in radial 
direction rigorously, classifies SBFEM as a semi-analytical 

approach. This is while, there is no fundamental solution 
is necessary unlike BEM [6]. So far, SBFEM has been 
implemented in various fields including: elastodynamics and 
fracture mechanics.

 Despite the considerable efforts which has been made 
toward implementation of SBFEM in various engineering 
areas, it has not been used to analyze elastodynamic behavior 
of piezoelectric patches at high frequencies. The purpose of 
this study is to investigate the capability of 2 dimensional 
coupled field SBFEM to model high-frequency vibration of 
piezoelectric patches in both time and frequency domain. The 
SBFEM results were also compared with their corresponding 
FEM results in terms of convergence rate, accuracy and 
computational cost.

2- Methodology
According to virtual work principle [7], the governing

equation of SBFEM is obtained as follows [8]: 
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Which can be reformulated in terms of dynamic stiffness   in 
frequency domain as follows [8]:
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To solve the above equation, the dynamic stiffness matrix is 
replaced by a continued fraction expansion in terms of frequency. 
The expansion order is closely related to the intended frequency 
range. Increasing the order of continued fraction expansion, 
improves the accuracy, especially at high frequencies. This 
is while, this approach is accompanied by introduction of 
additional auxiliary variables which will increase the number 
of Degrees Of Freedom (DOF) and thus, computational cost. 
To overcome this drawback, employment of finer subdomains 
in order to discretize the intended domain and ignoring the 
high-order terms in dynamic stiffness matrix expansion is 
recommended [9]:
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where [k] and [M] are stiffness and mass matrices of 
S-element, and are obtained through solving an algebraic Riccati 
equation and a Lyapunov equation, respectively. Collectively, 
the solving procedure of SBFEM for elastodynamic analysis of 
piezoelectric patch is summarized here:

3- Results and Discussion
Fig. 2 compares the convergence rate of SBFEM and FEM

in terms of first 50 eigen-value deviation index.  According 
to steeper slope of SBFEM graph, its convergence rate is 
much greater than FEM, which indicates the lower number 
of DOF required to discretize the intended domain with 
SBFEM.  Figs. 3 and 4 depict the system response to high 
frequency excitation in the form of point displacement in 
y direction in frequency and time domains, respectively. 
These results correspond to the system response to chirp 
(frequency analysis) and 5 cycle Hanning windowed tone 
burst (temporal analysis) excitation. The great agreement of 
the results demonstrates the potential of SBFEM to simulate 
high frequency standing and propagating waves behavior in 
perforated (source of discontinuity and stress concentration) 
piezoelectric patch;  however, with much simpler mesh 
generation process and much less computational cost (the 
SBFEM DOF is about one-third of FEM).

4- Conclusions
The elastodynamic behavior of piezoelectric patches at

high frequencies were investigated using SBFEM. In order to 
evaluate the accuracy of SBFEM, the free and forced vibration 
of a piezoelectric patch, a piezoelectric patch attached to an 
aluminum structure, a piezoelectric patch with a circular 
hole and a cracked piezoelectric patch was analyzed as four 
case studies. Comparison of convergence rate of SBFEM 
and FEM indicates that the former provides exact results 
with much less DOF. In addition, proper matching of results 
demonstrates the capability of SBFEM to model a variety of 
problems accurately at a very low computational cost.

Fig. 2. Averaged relative error of the first 50 eigen-frequencies the 
perforated piezoelectric patch

Fig. 3. Frequency response of the perforated piezoelectric patch 
(frequency range of 0-35 kHz)

Fig. 4. Transient response of the perforated piezoelectric patch 
(0 - 300 )

Fig. 1. Solution procedure of SBFEM
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