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Stability and Thermodynamic Consistency in the Coexistence Curve Of Liquid-Vapor 
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ABSTRACT: In this paper, the conditions of convergence and thermodynamic consistency of the 
Kupershtokh model for simulating a 2D droplet are investigated. Hence, the coexistence curve of liquid 
and vapor phases is divided into four levels according to the constant of the potential function, k and the 
weight coefficient of the intermolecular forces, A. Accordingly, a range is reported for k at each level. 
This range for level 1 with the lowest density ratio is kmin= 0.05 to kmax = 0.22 and for the fourth level with 
the highest density ratio is kmin=0.002 to kmax = 0.01. Also, the appropriate weight coefficient for inter-
molecular forces, Afit is obtained for yielding the thermodynamic consistency at levels 1 to 4 equal with 
0.25, 0.025, -0.082 and -0.125, respectively. Results show that the choice of A=0.5 produces symmetric 
and A=0 causes asymmetric forces in the interface. Finally, the problem of mass conservation in four 
levels is investigated. Results show that Kupeshtokh model has a better behavior in controlling the mass 
of the droplet in the high density ratios. So, the change in the mass of the droplet at level 1 is more than 
20% and at the level of 4 is less than 1%.
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1- Introduction
The most common model for simulating two-phase flows in
the lattice Boltzmann framework is the pseudopotential model 
[1]. The emergence of spurious velocities, thermodynamic
inconsistency, the low viscosity, and density ratios and the
relation between the equation of state and surface tension are
among the limitations of this model [2].
Kupershtokh model [3] succeeds to reduce spurious velocities 
and achieve a high-density ratio by first, using the Exact
Difference Method (EDM) in force insertion and second,
the combination of symmetric and non-symmetric methods
in the calculation of the potential function at the interface of
the two phases. However, the results of this model are highly
dependent on the behavior of the potential function, which
is controlled by the constant of potential function, k, and the
weighting factor of the force equation, A. In this paper, in
addition to providing a pattern for selecting the constant of
the potential function and the weight factor of the force, the
force distribution conditions at the interface of the two phases
are studied.

2- Methodology

2- 1- Lattice Boltzmann method
In order to apply the external forces to the Boltzmann
equation, one can write [4]:
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In Eq. (1), if∆  is due to the external forces. In this paper, the 
exact difference method for the application of external forces 
is used. In this method, the difference in the equilibrium 
distribution function before and after force application in a 
time step is defined as follows [3]:

(2)( , ) ( ( , ), ) ( ( , ), )eq eq
i i if t f t f tρ ρ∆ = + ∆ −x x u u x u

where, /t ρ∆ = ∆u F .

2- 2- Pseudopotential model
In order to calculate the intermolecular forces, the gradient
of the potential function U  must be taken according to

U= −∇F  . For this purpose, two solutions are proposed. In
the first solution, the gradient is computed proportional to the
directions of the D2Q9.
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In Eq. (3), 1/kG G  is a coefficient that shows the contribution 
of adjacent points in the calculation of U∇  . The Gk
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coefficient for the main directions is equal to G1 and in the 
minor directions is 0.25 G1. In the second solution, with 
the definition of the special function, one can consider the 
potential function as follows [5-7]:

(4)( , ) ( , )r r r rT U Tφ ρ ρ= − 

Substituting Eq. (4) in U= −∇F   the following equation is
obtained [3]:

(5)2φ φ= ∇F

Using numerical approximation, Eq. (5) can be written as [5, 7]:
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The following equation can be obtained by combining 

Eqs. (3) and (6) with different weights [3]:
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In Eq. (7), parameter A acts as a weighting factor. Eq. (7) for the 
value of A=0 leads to Eq. (6), and for A=0.5 leads to Eq. (3).

3- Results and Discussion
To check the accuracy and obtain the surface tension the
Laplace test is carried out. According to Laplace’s law, the
difference in pressure inside and outside of a two-dimensional 
droplet is obtained by [8]:

(8)in outp p p
R
σ

∆ = − =

The results of Eq. (8) in a 200 200×  computational domain 
are obtained from two equations of states of van der Waals 
and modified Kaplun-Meshalkin and are shown in Figs. 1 and 
2.., show the coexistence curve which is obtained by Maxwell 
equal area using van der Waals equation of state. According 
to this figure, it is seen that by increasing the density ratio 
access to a pattern will be necessary to select the simulation 
parameters of the flow. Accordingly, the temperature range 
of 0.92-0.99 is named as level 1, the range of 0.7-0.9 named 
as level 2, the range of 0.5-0.65 refers to level 3 and a 
temperature range of 0.3-0.45 is known as level 4.

Fig. 1. Laplace test to calculate the surface tension of the droplet.

3- 1- Effect of k on the coexistence curve
Changing the parameter k shows that for each Tr, there is a
range of k, that the convergence of the solution cannot be
reached outside it. The lower limit of this domain is kmin and
its upper limit is kmax. As shown in Fig. 2, the kmin and kmax
values are different for each level. By increasing the density
ratio these values decreased from 0.05 to 0.002 for kmin and
from 0.22 to 0.01 for kmax, respectively.

Fig. 2. The creation of various density ratios by changing the 
parameter of k.

4- 4.2. Effect of A on the coexistence curve
In this section, the value of k is equal to kmax at each level. Fig.
3 shows the variations in the density of the liquid and vapor
phases in terms of the Tr at four levels of 1 to 4. On this basis,
it is seen that by changing the value of A, the conditions for
convergence of simulations are provided in Amin<A<Amax. In
this range, Amin represents the lower limit of A for the lowest
density ratio, and Amax represents the upper limit of A for the
highest density ratio. The important point in this section is
the introduction of conditions in which the numerical density
ratio is equal to the theory of Maxwell’s equal area. In
other words, by choosing the proper amount of Afit, one can
achieve the thermodynamic consistency in simulating a two-
dimensional droplet.

Fig. 3. Matching the numerical density ratio with the Maxwell 
theory by changing the weighting factor of A.

5- Conclusion
• By increasing the density ratio, the stability domain of the
solution is transmitted to smaller values of k. So that, the
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kmin=0.05 at level 1 is reduced to 0.002 in the fourth level and 
the value of kmax reduces from 0.22 in level 1 to 0.01 in level 4.
• Changing the weight factor of A causes a change in the density 
ratio of the two phases. These changes are such that by choosing
the appropriate value for Afit, one can obtain the density ratio
corresponding to the base of the Maxwell equal area.
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