A Study on the Ballistic Behavior of Kevlar Fabric Impregnated with Shear Thickening Fluid Containing Graphene Oxide Additive

Amirhosein Naghizadeh¹, Hadi Khoramishad¹, Maisam Jalaly* ²

¹ School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
² Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.

ABSTRACT

In this research, the effects of graphene oxide (GO) as an additive to Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid (STF) on the ballistic performance were investigated. In order to understand the influence of STF, pull-out tests were accomplished to assess the friction between yarns. The energy absorption in the high-impact ballistic test for the fabric impregnated with STF increased by 25.8% compared to that for the neat Kevlar fabric. This parameter for the fabric impregnated with STF-0.2 wt.% GO was 23.3% as compared with that of the neat fabric, demonstrating the deteriorating effect of graphene oxide additive. The results of the pull-up tests were in agreement with ballistic tests, meaning that the increase or decrease in the maximum forces in pull-up tests was followed by the increase or decrease in the energy absorption in ballistic tests. Compared to the sample impregnated with STF, adding graphene oxide causes the decrease in the maximum force in the pull-up test, resulting in a reduction in restriction of yarns movement, consequently facilitating their movement inside the fabric.

KEYWORDS

Shear thickening fluid, Graphene oxide, Kevlar, Ballistic.

* Corresponding author's email: maisam_jalaly@iust.ac.ir
Introduction

The development of high-strength lightweight armors has been attracted considerable attention in recent decades. The advent of nanomaterials and nanotechnology has made significant progress in enhancing the performance of armors against high-velocity impact threats. With the advancement of polymer science, valuable polymeric materials such as high-strength polyamide yarns, aramid yarns, and high-density linear polyethylene yarns, and Kevlar have been produced for high-velocity impact applications. Fabrics can be strengthened by considering mechanisms of energy absorption. An approach for fulfilling this goal is promoting the interlocking between the yarns and restricting the relative movement of the yarns. This can be accomplished by impregnating the fabric with shear thickening fluids (STFs), frequently composed of silica particles dispersed in polyethylene glycol (PEG) [1, 2].

After impregnation of the fabric with STF, the fluid containing nanoparticles penetrates the fabric yarns, preventing them from easy pull-out. In fact, using STFs leads to an increase in the friction between yarns, resulting in the improvement of the fabric impact resistance.

Other than silica (SiO$_2$) nanoparticles, STFs may contain second or third nanoparticles, which are called multi-phase STFs. Gurgen et al. [3] investigated the stab penetration resistance of the fabric impregnated with a STF containing SiC nanoparticles. They indicated that the penetration resistance of the fabric increased by adding SiC to the STF. Laha et al. [4] reported an improvement in the low-velocity impact resistance of aramid fabrics by adding halloysite nanotubes to the SiO$_2$-based STF.

Tan et al. [5] added graphene additive to the spherical nanoSiO$_2$-based STF. They showed that graphene additive caused the maximum force in pull-out test and energy absorption in ballistic test to be increased, suggesting the fruitful influence of the graphene. On the other hand, Wang et al. [6] reported the decrease in the maximum force in pull-out test by adding graphene to the STF, implying the destructive effect of graphene on the STF performance.

Therefore, the current work is intended to elucidate the effect of adding graphene oxide (GO) to the SiO$_2$-based STF on the high-velocity impact performance (ballistic) of Kevlar.

Materials and methods

Spherical nanoSiO$_2$ with an average size of 30-40 nm, polyethylene glycol (PEG) with a molecular weight of 400 g/mol, aqueous graphene oxide suspension with a concentration of 5 g/l, ethanol, and Kevlar fabric with an areal density of 200 g/m2 were used in this work. The specimens were coded as follows:

- NF: the neat fabric.
- FS: the fabric impregnated with the simple STF (65 wt.% PEG, 35 wt.% nanoSiO$_2$).
- FSG: the fabric impregnated with the STF containing GO (64.8 wt.% PEG, 35 wt.% nanoSiO$_2$, 0.2 wt.% GO).

To assess the friction phenomenon, yarn pull-out test was carried out. Furthermore, high-velocity impact test was performed using the gas gun with a projectile velocity of 235 m/s.

Results and discussion

Figure 1 shows the yarn pull-out test at two different projectile velocity (50 and 500 mm/min). As the maximum force is a critical parameter to analyze the friction, maximum forces of different samples were plotted in Fig. 2.

![Figure 1. The curves of force-displacement in the single yarn pull-out test performed at velocity of (a) 50 and (b) 500 mm/min.](image-url)
It is clear from Figure 2 that the maximum force is dependent on the pull-out velocity for FS and FSG samples, while the behavior of the neat Kevlar is independent of the pull-out velocity. For FS sample, when the STF-impregnated yarn is pulled out of the fabric, viscosity of STF increases and the movement of the yarn is restricted, resulting in an increase in the pull-out maximum force. For FSG sample, however, a decrease (~26.5%) in the pull-out maximum force was observed, implying the degradation of thickening behavior and easier yarn pull-out. This may be attributed to the lubricating nature of the graphene, which reduces the friction between yarns.

The results of ballistic test was tabulated in Table 1. The presence of simple STF coverage on the yarn surfaces caused the reduction of residual projectile velocity, and thus, the energy absorption increased by 25.8% compared to NF. The sample FSG also had a 23% higher energy absorption compared to NF, but this is lower than that of FS. This is in agreement with the results of pull-out test, demonstrating the deteriorating role of graphene oxide additive in the shear thickening fluids.

Conclusions

Kevlar was impregnated with a nanosilica-based shear thickening fluid (STF). The effects of adding graphene oxide to the STF on the pull-out and high-velocity impact behaviors of the impregnated fabrics were investigated. The results revealed that the presence of graphene additive reduced the maximum pull-out force due to the increase in the lubricating nature of the yarn surfaces, suggesting that graphene had a negative effect on the shear thickening behavior. The sample impregnated with simple STF exhibited a 25.8% increase in energy absorption in ballistic impact test compared to the neat Kevlar, while the sample impregnated with STF containing GO exhibited a 23.3% increase compared to the neat fabric, indicating GO additive weakened the ballistic performance of the STF-impregnated Kevlar.

Table 1. The results of ballistic test.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Initial projectile velocity (m/s)</th>
<th>Residual projectile velocity (m/s)</th>
<th>Energy absorption (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>235</td>
<td>215.3</td>
<td>12.0</td>
</tr>
<tr>
<td>FS</td>
<td>235</td>
<td>209.9</td>
<td>15.1</td>
</tr>
<tr>
<td>FSG</td>
<td>235</td>
<td>210.5</td>
<td>14.8</td>
</tr>
</tbody>
</table>

References