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ABSTRACT:  Determination of multiphase flow dynamics and thermal behavior of two-phase flow 
in a channel are of importance. The small-scale surface tension effect and related simulation efficiency, 
precision, and stability, have caused mesoscopic Lattice Boltzmann method broadening application. In 
the current study, the thermal-hydraulic behavior of subcooled falling flow in a vertical channel and 
around a single horizontal tube is simulated by using the Lee method and phase-filed model, and thermal 
passive scalar model. The modified curved boundary conditions and two different boundary conditions 
for side boundaries are investigated. The density ratio is 20 and other property’s ratios of water are 
applied, and the outside diameter of the tube is 28.9mm. The flow, temperature, and pressure fields are 
presented and a detailed understanding of the movement of the three-phase contact line, circulating 
flow and local and average Nusselt numbers are determined. The film thickness, thermal boundary layer 
variation by the film thickness, Reynold number effect on Nusselt number and mass conservation are 
investigated as verification. The results have shown good consistency and high effectiveness in the 
simulation of multiphase gas-liquid flows in the presence of a circular obstacle, and for viscosity and 
thermal diffusivity ratios of water. 
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1. INTRODUCTION
Falling Film Flow and heat transfer around a horizontal 

heated tube have significant applications in several industries. 
There are several interdependent mechanisms that have 
not been recognized yet. Narvaez and Simões [1] reviewed 
experimental studies and noted that the available empirical 
correlations are strongly dependent on operating conditions 
under which they had been developed. 

Moreover, the dynamic behavior of microscopic 
phenomena at the interface is the main problem of numerical 
methods. Also, deficiency in the calculation of small-scale 
surface tension and gradients cause the formation of parasitic 
currents and instabilities. Mirjalali et al. [2] reviewed and 
evaluated the most common classic methods. They concluded 
that phase-filed and Volume of Fluid (VOF) are the most 
reliable methods. Meanwhile, there is not any comprehensive 
theoretical solution to this problem. Rogres [3] investigated 
the falling film on a single tube and applied several significant 
simplifications. Their results are applicable for limited ranges 
of non-dimensional numbers.

Mirjalali et al. [4] have done another study and showed 
the superiority of the phase-filed model in comparison 
to the volume of fluid, in terms of accuracy and stability. 
They concluded that the biggest remaining challenge is the 
development of a stable more cost-effective model. Therefore, 
it could be concluded that because of the application of the 
phase-field model in most of Lattice Boltzmann Methods 

(LBM), and because of the molecular kinetic nature of LBM, 
it is the most effective method for simulation of two-phase 
flows. In this regard, several studies have compared LBM 
with classic numerical methods [5-7]. Their results have 
approved the precision, stability, time-efficiency, simplicity 
and applicability of LBM. 

Due to the kinetic instinct of LBM, instability increases 
with the increase of differences in properties of phases. Lee 
[8] in 2009 introduced a model which is stable up to a density 
ratio of 1000. In this paper, the thermal and flow behavior of 
a jet of water at 100°C that flows around a horizontal tube 
at 110°C under the gravity force is simulated by multiphase 
Lee’s method and passive scalar method. The modified 
curved boundary treatments are used. Finally, the flow and 
temperature fields are presented and investigated. 

2. METHODOLOGY
In Lee’s method, two distribution functions h and g 

are used to simulate the flow behavior of two immiscible 
and incompressible phases. The final Discrete Boltzmann 
equation for the evolution of the hydrodynamic pressure and 
momentum, g, is
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In the same way, the Discrete Boltzmann Boltzmann 
Equation equation for the transport of composition (h) 
can be written in the following form: 
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where the modified distribution functions h  and eqh
 

are written as follows: 
(5) ( ) ( ) ( )2. Γ

2 2

eq

h ext
s

h h t Ch h e u C p C F
c

 
   

 
 

−  
= + − −  −  +  − 

 

 

(6) ( ) ( )2. Γ
2

eq eq
h ext

s

t Ch h e u C p C F
c   

 


 
= − −  −  +  − 

 

 

where /local lC  = and ( )/h C f = . The Lattice 
Boltzmann Equation equation for the distribution 
function of temperature is: 
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Where where Equilibrium distribution is presented as 
the following form 
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When a boundary is located in the middle of the 
fluid node f and solid node b, the post-collision 
unknown distribution functions are determined based on 
the distance from f to the curved boundary (Δ) as below: 
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where gα  and eqgα are particle and equilibrium distribution 
functions respectively:
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When a boundary is located in the middle of the 
fluid node f and solid node b, the post-collision 
unknown distribution functions are determined based on 
the distance from f to the curved boundary (Δ) as below: 
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1. Introduction 

Falling Film Flow and heat transfer around a horizontal 
heated tube have significant applications in several 
industries. There are several interdependent mechanisms 
that have not been recognized yet. Narvaez et al.and 
Simões [1] reviewed experimental studies and noted 
that the available empirical correlations are strongly 
dependent on operating conditions under which they 
had been developed.  

Moreover, the dynamic behavior of microscopic 
phenomena at the interface is the main problem of 
numerical methods. Also, deficiency in the calculation 
of small-scale surface tension and gradients cause the 
formation of parasitic currents and instabilities. 
Mirjalali et al. [2] reviewed and evaluated the most 
common classic methods. They concluded that phase-
filed and Volume of Fluid (VOF)2 are the most reliable 
methods. Meanwhile, there is not any comprehensive 
theoretical solution for to this problem. Rogres et al. [3] 
investigated the falling film on a single tube and applied 
several significant simplifications. Their results are 
applicable for limited ranges of non-dimensional 
numbers. 

Mirjalali et al. [4] have done another study and 
showed the superiority of the phase-filed model in 
comparison to the volume of fluid, in terms of accuracy 
and stability. They concluded that the biggest remaining 
challenge is the development of a stable more cost-
effective model. Therefore, it could be concluded that 
because of the application of the Phasephase-Field field 
model in most of Lattice Boltzmann Methods3,  (LBM), 
and because of the molecular kinetic nature of LBM, it 
is the most effective method for simulation of two-phase 
flows. In this regard, several studies have compared 
LBM with classic numerical methods [5-7]. Their 
results have approved the precision, stability, time-
efficiency, simplicity and applicability of LBM.  

Due to the kinetic instinct of LBM, instability 
increases with the increase of differences in properties 
of phases. Lee [8] in 2009 introduced a model which is 
stable up to a density ratio of 1000. In this paper, the 
thermal and flow behavior of a jet of water at 100°C 
that flows around a horizontal tube at 110°C under the 
gravity force is simulated by multiphase Lee’s method 
and Passive passive Scalar scalar Methodmethod. The 
modified boundary treatments are used. Finally, 
the flow and temperature fields are presented and 
investigated.

 
2 VOF 
3 LBM 

2. Methodology 
In Lee’s method, two distribution functions h and g are 
used to simulate the flow behavior of two immiscible 
and incompressible phases. The final Discrete 
Boltzmann Equation equation for the evolution of the 
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fluid node f and solid node b, the post-collision 
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where /local lC ρ ρ= and ( )/h C fα αρ= . The Lattice Boltzmann 
equation for the distribution function of temperature is:
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When a boundary is located in the middle of the fluid node 
f and solid node b, the post-collision unknown distribution 
functions are determined based on the distance from f to the 
curved boundary (Δ) as below:
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Also, Postpost-collision temperature curved 
boundary conditions of Guo et al. [9] are employed. 

3. Discussion and Results 

The efficiency of the method in calculation of the 
surface tension which plays a major role in multiphase 
problems is verified by Laplace Lawlaw.  The result 
shows less than 5% error at initial time steps. 

Also, the verification of temperature-flow simulation 
is done by simulation of Rayleigh-Benard 
Convectionconvection. Fig. 1 shows expected 
mechanical and thermal dependencies, based on rotating 
flows and temperature profiles. 

 
Fig.  1. Flow and Temperature temperature Lines lines of 

Twotwo-Phase phase Gasgas-Liquid liquid Rayleigh-Benard 
Convection convection for Ra=2.9×103 

Moreover, the effect of the side boundaries’ 
conditions on flow and temperature behavior of falling 
liquid flow in a channel of gas are investigated. The 
order of falling flow velocity and the variation of 
pressure and temperature distribution are in line with 
expectations. Pressure changes in accordance with depth 
and the temperature of liquid increases as it contacts to 
the heated wall.   

The simulation of falling flow around the cylinder is 
done successfully and the details of flow behavior 
including the time evolution and location of circulating 
flow regarding to pressure distribution and location of 
the three three-phase interface is are determined. These 
results show the accuracy of curved boundary 
conditions. 

Finally, by restricting the inlet size, the falling film 
is simulated. The time evolution of film entrance to the 

domain, formation of the film around the tube, and 
separation of drops from the tube are presented in Fig. 
2. The diameter of the separated drop is validated by the 
Yung equation [10]. 

 
Fig.  2. (a)Time Evolution evolution of Falling falling Film film 

Formationformation, Seperation separation and Leaving leaving 
the Domaindomain, (b) Falling Film film Streamlines streamlines 

at t3 

This simulation is done by considering the Prandtl 
number of two phases and solving the temperature 
equation for both phases, without any simplification. As 
Fig. 3. Shows that the thermal boundary layer thickness 
increase with increment of circumferential angles in 
accordance with theoretical results [11, 12].  

 
Fig.  3. Temperature Distribution distribution around the Tube 

tube for the Steady steady Film film at different Circumferential 
circumferential Anglesangles. 

 
Local Nusselt Number number is calculated by 

0
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 and the average Nusselt number is 

equal to 
0

1 Nu 2.18Nu



= = . This value is equal to 3.66 

for single single-phase flow in constant temperature 
tubes and 4.36 for constant heat flux. Also, based on 
Peclet and Prandtl Number number of simulations, the 
comparison of results with the similarity solution of the 
natural convention is considerable. This value is 2

1/6

8/279/16

0.3870.6 4.1
1 (0.559 / Pr)

D
D

RaNu
  = + = 
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 for flooded cylinder 

in the pool of liquid [13]. The main reason of for 
deviations could be the application limitations of 
correlations. 

4. Conclusions 
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Also, post-collision temperature curved boundary 
conditions of Guo et al. [9] are employed.

3. DISCUSSION AND RESULTS
The efficiency of the method in calculation of the surface 

tension which plays a major role in multiphase problems is 
verified by Laplace law. The result shows less than 5% error at 
initial time steps.

Also, the verification of temperature-flow simulation is 
done by simulation of Rayleigh-Benard convection. Fig. 1 
shows expected mechanical and thermal dependencies, based 
on rotating flows and temperature profiles.

Moreover, the effect of the side boundaries’ conditions 
on flow and temperature behavior of falling liquid flow in 
a channel of gas are investigated. The order of falling flow 
velocity and the variation of pressure and temperature 
distribution are in line with expectations. Pressure changes in 
accordance with depth and the temperature of liquid increases 
as it contacts the heated wall.  

The simulation of falling flow around the cylinder is 
done successfully and the details of flow behavior including 
the time evolution and location of circulating flow regarding 
pressure distribution and location of the three-phase interface 
are determined. These results show the accuracy of curved 
boundary conditions.

Finally, by restricting the inlet size, the falling film is 
simulated. The time evolution of film entrance to the domain, 
formation of the film around the tube, and separation of 
drops from the tube are presented in Fig. 2. The diameter of 
the separated drop is validated by the Yung equation [10].

This simulation is done by considering the Prandtl number 
of two phases and solving the temperature equation for both 
phases, without any simplification. As Fig. 3. Shows that the 

 
Fig. 1. Flow and temperature lines of two-phase gas-liquid Rayleigh-Benard convection for Ra=2.9×103 

  

Fig. 1. Flow and temperature lines of two-phase gas-liquid 
Rayleigh-Benard convection for Ra=2.9×103
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thermal boundary layer thickness increase with increment of 
circumferential angles in accordance with theoretical results 
[11, 12]. 

Local Nusselt number is calculated by 0
/  

 rl

l w in

T r Dh DNu
T Tκ

=
∂ ∂

= =
−  

and the average Nusselt number is equal to 
0

1 Nu 2.18Nu
π

π
= =∑ . 

This value is equal to 3.66 for single-phase flow in constant 
temperature tubes and 4.36 for constant heat flux. Also, 
based on Peclet and Prandtl number of simulations, 
the comparison of results with the similarity solution 
of the natural convention is considerable. This value is 

2
1/6

8/279/16

0.3870.6 4.1
1 (0.559 / Pr)

D
D

RaNu
  = + = 

 +   
 for flooded cylinder in the pool of 

liquid [13]. The main reason for deviations could be the 
application limitations of correlations.

4. CONCLUSIONS
In this study, the flow and temperature behavior of 

two-phase falling flow around a horizontal tube has been 
simulated by the state-of-the-art Lattice Boltzmann method. 
The performance of boundary conditions and stability of 
models for determined geometrical and physical parameters 
have been concluded. The verifications including Laplace 

law, Rayleigh-Benard convection, and falling flow in the 
vertical channel have shown the accuracy of the method. By 
presenting the flow and temperature field of falling film, the 
formation and separation of film, and the local and average 
heat transfers are captured correctly. In Conclusion, despite 
the limitation of stability due to property ratios and gradients, 
this method presents reliable results. 
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Fig. 2. (a)Time evolution of falling film formation, separation and leaving the domain, (b) Falling film streamlines at t3 

  
 

 
Fig.  3. Temperature distribution around the tube for the steady film at different circumferential angles. 

 

Fig. 2. (a)Time evolution of falling film formation, 
separation and leaving the domain, (b) Falling film 

streamlines at t3

Fig.  3. Temperature distribution around the tube for the 
steady film at different circumferential angles.
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