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Solution of the Isotropic Heat Equation Using the Finite Volume Monte Carlo Method 
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ABSTRACT:  The solution of the heat diffusion equation in most practical applications involving 
complex geometry, thermophysical properties, and boundary conditions is not simply possible and there 
are some limitations for available numerical solutions. In this research, the finite volume Monte Carlo 
method was used for the solution of the isotropic heat equation due to two intrinsic capabilities of 
the finite volume method; first, each cell is energy conserved and second, the grid transformation is 
not necessary for complex geometries. The Monte Carlo method is a statistical approach based on the 
physical simulation of the problem capable to solve heat equation with any degree of complexity. First, 
a simple problem was investigated for validation of the method by comparing results with the analytical 
solution. Second, the prediction performance of the finite volume Monte Carlo method was evaluated in a 
problem with complex geometry, varying properties, and boundary conditions. Finally, the performance 
of the finite volume Monte Carlo method was investigated in estimating the temperature distribution of 
a three-layer body with different thermal conductivities and convection boundary condition. In all of the 
considered test cases, the predicted results were in good agreement with analytical and computational 
fluid dynamics solutions. It was also indicated that for a relatively small number of particles, it is possible 
to achieve acceptable accuracy with a low computational cost.

Review History:

Received: 2019-05-04
Revised: 2019-09-29
Accepted: 2019-11-05
Available Online: 2019-11-29

Keywords:

onte Carlo

Finite volume

Diffusion heat equation

 Conduction

Isotropic material

117

*Corresponding author’s email: h.naeimi@ub.ac.ir

                                  Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  
                                 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

1. INTRODUCTION
The Monte Carlo method is an efficient approach for 

the simulation of the conduction heat transfer [1-3]. In 
most of the practical applications including 3D geometries 
with arbitrary shaped boundaries, variable thermophysical 
properties, and complicated boundary conditions using the 
finite difference scheme in the derivation of the Monte Carlo 
form of the heat equation is restricted, especially when an 
unstructured mesh is superposed over the domain. Using the 
finite volume discretization technique will expand the scope 
of the Monte Carlo method in the analysis of real-world 
conduction problems. In the current study, the Finite Volume 
Monte Carlo (FVMC) method [4] is used in three problems 
with different levels of complexity to assess its performance 
under difficult conditions.

2. METHODOLOGY
The FVMC form of the heat equation may be derived 

by first integrating over a control volume and then applying 
the Green’s theorem and finally using the central difference 
discretization scheme for the resulting first-order derivatives 
on each of the cell faces [4]. The final FVMC form of the heat 
equation may be written as:

        
P E E W W N N S S

T T B B P

T F T F T F T F T
F T F T S

= + + + +
+ + �

(1)

The FVMC method is started by releasing N  particles from 
each point in the solution region and tracing them from cell 
to cell until they absorbed by one of the domain boundaries. 
At each step, the random walk direction is determined by 
generating a uniformly distributed random number, R , and 
following relations
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The FVMC method is started by releasing N  
particles from each point in the solution region and 
tracing them from cell to cell until they absorbed by one 
of the domain boundaries. At each step, the random 
walk direction is determined by generating a uniformly 
distributed random number, R , and following relations 
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3. Results and Discussion 

3.1 Unit cube without heat generation 

In this section, the temperature profile on the midline of 
a unit cube with boundary conditions as shown in Fig. 1, 
is calculated by the FVMC method and the results are 
compared with the exact data from the Carslaw and 
Jaeger [5] solution. As shown in Fig. 1, the results are 
consistent together which confirms the accuracy of the 
FVMC method. 

 

Fig. 1. Comparison of the temperature profiles on the 
midline of the unit cube  

The relative root mean square error, rmse , of the 
estimated results on the 0.5mz = plane with respect to 
the total number of investigated particles from each 
point, N , is plotted in Fig. 2. It is clear from Fig. 2 that 
by using a relatively small number of particles 
( 10000N = ) a very good accuracy is achieved. 

 

Fig. 2. rmse  of the FVMC method on the z=0.5 m plane as a 
function of N  

3.2 Spherical cavity in a cube with variable k  

In order to investigate the robustness of the proposed 
method to handle problems with complicated 
geometries, the FVMC method was used to calculate the 
temperature distribution of a unit cube with a hole 
inside with a radius of 0.25m . The temperature of the 
outside surfaces of the cube is assumed zero where a 
constant heat flux of " 210000 W/msq = is applied to 
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a unit cube with boundary conditions as shown in Fig. 1, is 
calculated by the FVMC method and the results are compared 
with the exact data from the Carslaw and Jaeger [5] solution. 
As shown in Fig. 1, the results are consistent together which 
confirms the accuracy of the FVMC method.

The relative root mean square error, 
rmse , of the estimated 

results on the 0.5mz = plane with respect to the total number 
of investigated particles from each point, N , is plotted in Fig. 
2. It is clear from Fig. 2 that by using a relatively small number 
of particles ( 10000N = ) a very good accuracy is achieved.

3.2 Spherical cavity in a cube with variable k
In order to investigate the robustness of the proposed 

method to handle problems with complicated geometries, 
the FVMC method was used to calculate the temperature 
distribution of a unit cube with a hole inside with a radius of 
0.25m . The temperature of the outside surfaces of the cube is 
assumed zero where a constant heat flux of " 210000 W/msq = is 
applied to the surface of the hole. The thermal conductivity of 
the medium and the heat source are defined as:

2 2 210exp( )exp( )exp( )k x y z= � (4)

100000cos( )cos( )cos( )g x y zπ π π= � (5)

The temperature distribution on the radial line with an 

angle of 45 degrees was compared with the computational 
fluid dynamics (CFD) solution in Figure 3. As it is evident 
from this Figure, the predicted temperatures from the FVMC 
method are fully consistent with those from the CFD method.

3.3 Three-layered cube
Consider a three-layered cube with different thermal 

conductivities as 
1 50 W/mKk = , 

2 300 W/mKk = , and 
3 250 W/mKk =  where a uniform heat source 3500000 W/mg =  

is placed within the middle layer of the body, as shown in Fig. 4. 
The temperature distribution on the 0.5 my = was compared 
with the CFD solution in Fig. 5 which are consistent together.
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Fig. 3. Comparison of the temperature profiles on the radial line with an angle of 45 degrees 

   

 

Fig. 4. Geometry and boundary conditions of the three-layered cube 

  

Fig. 3. Comparison of the temperature profiles on the 
radial line with an angle of 45 degrees

Fig. 4. Geometry and boundary conditions of the three-
layered cube

 

 

Fig. 5. Comparison of the temperature profiles on the 0.5 my = line 

 

Fig. 5. Comparison of the temperature profiles on the 
0.5 my = line
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4. CONCLUSIONS
Main conclusions of the paper are:

•	 The FVMC method can predict the temperature 
distribution in all of the considered test cases with any 
levels of complexity.

•	 The calculated rmse for all of the three problems for 
50000N =  particles are given in Table 1. As evident from 

this Table, the predictive performance of the FVMC is 
good even in complicated conditions.

•	 The FVMC method is quite suitable for the inverse heat 
conduction problems that only need to calculate the 
temperature at one or more points.

•	 It may be better to use the FVMC method in the problems 
with unstructured meshes that other numerical techniques 

Table 1. rmse  of the FVMC method (%) 

 

Table 1. 
rmse  of the FVMC method (%) are incapable of solving the problem.
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