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ABSTRACT:  One of the main topics in the field of robotics is the modeling and control of mobile 
robots in the trajectory tracking problem. In this paper, the kinematic and dynamic models of a 
manipulator connected by revolute-prismatic joints and installed in a non-holonomic wheeled mobile 
platform are first derived by applying the recursive Gibbs-Appell method. Indeed, by employing this 
dynamic methodology, one gets rid of the difficulties of Lagrange Multipliers that originate from non-
holonomic constraints. Then, a nonlinear predictive approach is applied to design the kinematic and 
dynamic control laws to generate trajectory tracking control commands of the non-holonomic robot. 
In this method, the nonlinear responses of the mobile robot are predicted using the Taylor series. The 
optimal control laws are analytically developed by minimizing the difference between the predicted and 
the desired responses of the system outputs. The obtained control inputs from a multivariable kinematic 
controller in the first stage are then used as the desired values to be tracked by the dynamic controller. 
Finally, the results of numerical simulations are then presented to emphasize the ability of the proposed 
method in the mathematical modeling and simultaneous trajectory tracking control of the mobile base 
and end-effector of such complex robotic systems. 
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1. INTRODUCTION
Moving manipulators typically comprise underactuated 

systems under non-holonomic constraints. The main 
specification of underactuated systems is that for them the 
number of states that are to be controlled is higher than the 
number of control inputs. Also, the dynamics of coupling 
between a moving platform and manipulator arm, and the 
existing nonlinearities and model uncertainties create many 
control challenges for the trajectory tracking of moving 
manipulators. Diverse techniques have been presented by the 
researchers to deal with these problems, including the use of 
sliding mode control [1], robust control [2], fuzzy control [3], 
adaptive control [4], and neural network control [5]. However, 
the results of this work are limited to a moving platform only 
and it does not reflect the coupling effects arising from the 
installation of a mechanical arm on it. 

2. SYSTEM KINEMATICS
This paragraph presents the kinematics of a multi-rigid-

link robotic manipulator with R-S joints which is installed 
on a moving base. Each link’s coordinate system (xiyizi) is 
oriented based on the laws proposed by Denavit & Hartenberg 
(D-H). The frame attached to the moving platform is x0y0z0, 
whose origin is fixed at Point P; the x0 axis is along the axis 
of symmetry of the moving base, y0 is along the rolling 
wheels’ axis of rotation (toward the left rolling wheel), and 
the z0 axis completes the orthogonal coordinate system. Also, 
the ground-fixed XGYGZG frame can be taken as the global 

reference frame. 
To accomplish the mathematical modeling of the above 

robotic system, the succeeding assumptions are adopted: 
1) the wheels roll on an even surface without slipping, 
2) The moving base is confined to travel in the XGOGYG 
plane, and 3) To uphold the no-slipping condition, Point 
P’s velocity is assumed to be co-linear with the platform’s 
axis of symmetry.

3. SYSTEM DYNAMICS 
The G-A formulation uses the Gibbs function (acceleration 

energy) to get the motion equations of a mechanical system. 
For this reason, a set of independent quasi-velocities is 
selected. These are quantities that are linear combinations 
of the generalized velocities but which cannot be integrated 
into the generalized coordinates. After constructing the 
Gibbs function in terms of accelerations, we calculate the 
differentiations of this function with respect to the selected 
quasi-accelerations. Finally, by equating the obtained result 
to the generalized forces associated with the quasi-velocities, 
the governing motion equations are derived. It can be easily 
proved that the Gibbs function for a rigid body has the 
following form
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m and GI  respectively denote the mass and moment of 
inertia about the centroid, Ga  is the centroid’s acceleration, 
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 respectively represent the rigid body’s angular 
velocity and acceleration, and ω~  indicates the skew-
symmetric matrix associated with vector ω



.
The inverse dynamic motion equations of the examined 

moving robotic system are obtained as
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where U  are the generalized forces associated with 
quasi-velocities For control purposes, it is desired to group 
the coefficients of quasi-accelerations on the left-hand side of 
the equations and to arrange the remaining dynamic effects on 
the right-hand side. By organizing these differential equations 
in a matrix format, the direct dynamic motion equations are 
derived as
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Where where U  are the generalized forces associated 
with quasi-velocities For control purposes, it is desired 
to group the coefficients of quasi-accelerations on the 
left left-hand side of the equations and to arrange the 
remaining dynamic effects on the right right-hand side. 
By organizing these differential equations in a matrix 
format, the direct dynamic motion equations are derived 
as 
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4. Problem statement Statement and control Control 
system System designDesign 

The main task of the suggested control system is to 
determine the input torques that are applied to the 
respective rolling wheels and to the rotary manipulator 
joint and to obtain the input force exerted on the sliding 
joint of the manipulator, so that the actual robot’s 
platform and end-effector can follow the trajectory of 
the reference robot’s platform and end-effector. There 
are two phases in the suggested control system. In the 
initial phase, a kinematic controller is designed to find 
the proper input velocities that can converge the 
position errors of the system to zero. Then, a dynamic 
controller is designed to derive the control torques and 
forces that can converge the robot’s angular and linear 
velocities to the desired linear and angular velocity 
inputs obtained from the kinematic controller. 
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4. PROBLEM STATEMENT AND CONTROL SYSTEM 
DESIGN

The main task of the suggested control system is to 
determine the input torques that are applied to the respective 
rolling wheels and the rotary manipulator joint and to obtain 
the input force exerted on the sliding joint of the manipulator 
so that the actual robot’s platform and end-effector can 
follow the trajectory of the reference robot’s platform 
and end-effector. There are two phases in the suggested 
control system. In the initial phase, a kinematic controller is 
designed to find the proper input velocities that can converge 
the position errors of the system to zero. Then, a dynamic 
controller is designed to derive the control torques and forces 
that can converge the robot’s angular and linear velocities to 
the desired linear and angular velocity inputs obtained from 
the kinematic controller.

5. TRACKING ERROR FORMULATION
To design a kinematic controller for the mentioned robotic 
system, the tracking error of the entire system (including 
the traveling base and the link of the manipulator) should be 
evaluated as
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In the next section, we use the tracking error dynamics 
(Eqs. (6) through (10)) to design the kinematic controller.

6. KINEMATIC CONTROL DESIGN
Here, a novel kinematic controller will be developed by 

employing the predictive control scheme. For this purpose, 
Eqs. (6) through (10) are expressed in the format of state 
space as
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The purpose of this section is to stabilize the underactuated 
robotic system described by Eqs. (11) through (15) by finding 
proper control laws. Hence, according to the state-space 
model of the considered system, these output functions can 
be written as

( )rxxy 0211 sgn- θβ =  (16)

1+= ii xy 4,...,2=i  (17)

In this method, system outputs for subsequent time steps 
are initially predicted using Taylor series expansion and 
then the current control inputs are found by continuously 
minimizing the predicted tracking errors. In this respect, 
for stabilization problems, a quadratic point-wise objective 
function can be defined as
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The predicted output response in subsequent time steps 
is approximated by the Taylor series expansion at time t, as 
follows:

( ) ( ) ( )tyhtyhty iii +=+   4,...,1=i  (19)

The output equations and their derivatives are substituted 
into Eq. (19) and then inserted into Eq. (18) to acquire the 
expanded objective function as a function of control inputs. 
The optimal control laws for ui(t), are then obtained by 
minimizing the objective function. So, the control inputs are 
derived by applying the necessary optimality condition:
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7. DEVELOPMENT OF THE DYNAMIC CONTROL 
LAWS

Here, a nonlinear prediction-based controller is developed 
by employing the robotic manipulator’s dynamic models. In 
state-space format, this system’s dynamic model (expressed 
by Eq. (5)) can be represented as
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( ) iii Uxfx +=
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 (21)

The design of the predictive controller for the dynamic 
model is similar to that of the kinematic model. The objective 
here is to maintain the system outputs close to desired 
responses achieved in the previous section. Here again, a 
point-wise objective function that minimizes the tracking 
error for subsequent time steps is presented as
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Where

( ) ( ) ( )1,11 htyhtyhte diii +−+=+  4....1=i  (23)

Performing a first-order Taylor series expansion is enough 
to obtain yi, and their desired values (i.e., yi,d).

( ) ( ) ( )tyhtyhty dioridioridiori ,1,, +=+   4,,1=i  (24)

Substituting Eq. (24) into Eq. (23) and subsequently into 
the performance index present by Eq. (22) and using the 
state-space form of the dynamic motion equations (Eq. (21)) 
yields
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Now, by enforcing the optimality condition, the optimal 
control rules can be extracted as

( )[ ]diiii xfhe
h

U ,1
1

1
−+−=   4,,1=i  (26)

8. CONCLUSION
In this article, the motion equations of a single link 

movable robotic manipulator with R-S joints are extracted 
in closed-form. The dynamic model is based on the G-A 
methodology to derive the motion equations of the 
mentioned robotic system. Then, by using the predictive 
control approach, a kinematic controller has been optimally 
and recursively designed to get the preferred angular and 
linear velocities of the movable platform and manipulator 
links so that their position error dynamics converge to zero. 
Furthermore, a dynamic controller has also been analytically 
and symbolically developed to track the desired velocities 
obtained from the kinematic controller and also to find the 
proper dynamic control laws in the form of input control 
torques and forces. 
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