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ABSTRACT:  Quadrotor is an unmanned aerial robot from multi-rotor drones group that has high 
maneuverability, vertical take-off, and landing and stationary flight capabilities. In the most practical 
applications, the quadrotor system is subjected to external disturbance forces due to wind and unbalanced 
weight or inertia of the payload. To maintain balance and hold the position, attitude stabilization of 
the quadrotor is necessary for the presence of disturbances and unbalanced forces. Using conventional 
controllers with constant gains is not very efficient to eliminate variable disturbances that affect quadrotor 
motion in different conditions. In this paper, an adaptive fuzzy proportional integral derivative controller 
is designed for quadrotor attitude stabilization in which controller gains are regulated continuously based 
on the adaptive laws and the fuzzy inference system. The performance of the proposed controller is 
examined in the disturbance rejection test and is compared to the conventional proportional integral 
derivative controller. Also, the performance of the proposed controller is approved by hardware in the 
loop experimental tests using a 3 degree of freedom pilot platform. The experimental results will show 
the effectiveness of the adaptive fuzzy proportional integral derivative controller compared with the 
conventional proportional integral derivative controller.
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1. INTRODUCTION
In recent decades, the stability analysis and control design 

of various kinds of Unmanned Aerial Vehicles (UAVs) have 
received much attention. The UAVs are widely used in several 
tasks such as visual acquisition, surveillance, exploration, and 
disaster assistance in urban circumstances [1]. Consequently, 
it is studied for different kinds of UAVs such as fixed-wing 
airplanes, helicopters, and also quadrotors. The quadrotor is 
the most popular kind of multi-rotor UAVs due to its simple 
mechanics, high maneuverability, and performing stable 
stationary flights.

The motion control of a quadrotor is a challenging problem 
due to its nonlinear under-actuated dynamics. Especially, 
controlling the lateral motion of a quadrotor is the main 
problem since it is associated with an under-actuated sub-
system of the quadrotor dynamics. Several approaches are 
presented to control design and stability analysis of quadrotors 
and some strategies have been developed to solve the path 
following problems [2, 3].

The model-based methods presented to control the design 
of quadrotors involve two major drawbacks. They need fast 
and heavy computation units due to their complicated and 
time-consuming control laws. On the other hand, they are 
restricted for autonomous long-range applications where the 
imposed communication delay with stationary control unit 
disrupts real-time operation of the quadrotor [4]. Motivated 
by previous studies, in this paper, fuzzy logic is employed to 
design an adaptive fuzzy-PID controller for nonlinear under-

actuated dynamics of the quadrotor. To achieve a robust 
performance against external disturbances, all PID gains 
are updated individually. Moreover, a compensator is added 
to control structure to weaken the estimation errors of the 
adaptive fuzzy-PID controller. Performance of the proposed 
adaptive fuzzy-PID controller is compared with conventional 
PID controller which shows significant improvement in 
tracking accuracy.

2. DYNAMIC MODELING AND CONTROL DESIGN
The Quadrotor has a simple mechanical structure 

consisting of a symmetric cross-shaped rigid body and four 
electrical rotors which are located at the end of cross arms. 
The schematic model of a quadrotor is depicted in Fig . 1. The 
trust force (T) and the aerodynamic moment (Q) are calculated 
as follows [5]   

 2 2,T b Q dω ω= = � (1)

where b and d are constant positive values andω  is the 
angular velocity. The translational dynamics of a quadrotor is 
given from the Newton approach [5]
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The rotational dynamics is presented as follows [
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The quadrotor is an under-actuated system because it has 
six degrees of freedom but only four actual inputs. As a result, 
only four DOFs can be controlled independently. Eq.  can be 
represented as follows
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The following feedback linearization controller is 
introduced to yield three independent dynamical equations
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The following feedback linearization controller is 
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For each of the resultant second-order equations, the 
same control procedure is designed. These equations are in 
the following form

( , ) ( , ) ,x f x x g x x u d y x= + + =                               �  (6)

where f(.) and g(.) are nonlinear bounded functions. By 
defining the tracking error as ,ry y= −e we will have
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3. Experimental Study 
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