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ABSTRACT:  For the first time, vibrations of the axially graded Rayleigh moving beams are studied. It is 
supposed that the material characteristics of the system change linearly or exponentially in a longitudinal 
direction continuously. By using the Galerkin method and eigenvalue problem, the natural frequencies 
and divergence of the system are computed numerically. Also, the analytical relations are extracted for 
the critical velocity of the system. Essential contours of velocity and stability maps are investigated 
for different distributions of material. As indicated, exponential and linear changes lead to more stable 
operation in the variable state of density and elastic modulus, respectively. Also, the results showed that 
increasing the elastic modulus gradient parameter or decreasing the density gradient parameter results 
in an increase in the natural frequency of the system and a development in stability. Hence, alteration 
in the density and elastic modulus gradient parameters has a different role in the dynamic behavior 
of the system. The results of this study can be useful for designing and optimizing high-speed non-
homogeneous axial movable structures. 
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1. 1. INTRODUCTION
Axial moving beams are widely used in various engineering 

industries. Therefore, numerous researchers have addressed 
the dynamic modeling and vibrational characteristics of 
these structures and have discussed the dynamic behavior 
of these structures from multiple aspects [1, 2]. In all of the 
available articles, the materials used in the structures were 
homogeneous. In recent years, engineers have improved 
the mechanical behavior of moving dynamics systems by 
enhancing material properties. To avoid possible structural 
limitations, the researchers introduced functionally graded 
materials, made from one surface to another by continuous 
and soft changes of two or more constituents [3-5]. 

According to the authors’  knowledge, in all studies 
on axially graded beams, it has been assumed that the 
configuration of the system materials changes along with the 
thickness while studying the dynamic behavior of the graded 
beams despite the importance of grading the material properties 
in the axial direction. In this regard, the dynamical analysis 
and stability improvement of two-axis Rayleigh moving 
beams have been studied comprehensively, numerically, and 
analytically by applying axial graded materials. The effect 
of several vital parameters, such as axial grading, rotational 
inertia, and beam velocity on the dynamical properties of 
the axial propulsion systems are explained. The features of 
the materials change in longitudinal direction based on two 
linear and exponential profiles. The dynamical equation of 
the system is derived based on Hamilton’s law and compared 

with the equations in the literature. In the following, the 
reduced-order equation is obtained by the Galerkin method, 
and the eigenvalue problem is applied. Then, instability zones 
are identified for the axial moving axial beam [6, 7].

2. 2. METHODOLOGY
It is assumed that the beam or boundary conditions of 

simple supports at a constant axial velocity V move in the 
longitudinal direction and are under P axial pressure. The 
length, cross-sectional area, and moment of inertia of the 
beam are indicated by L, A, and I, respectively. The kinetic 
energies and potential of the system are expressed in Eqs. 
(1-2) [8-13]:
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where w (x, t) is the transverse beam. According to 
Hamilton’s principle, it can be written: 
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By placing Eqs. (1-2) into Eq. (3), we will have:
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The discretization of the system equation, the transverse 
beam displacement is given by Eq. (5): 
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where qr is the generalized dimensional coordinate, n is 
the number of essential functions, φr is the acceptable mode 
for the transverse displacement of the system.
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Axial moving beams are widely used in various 
engineering industries. Therefore, numerous researchers 
have addressed the dynamic modeling and vibrational 
characteristics of these structures and have discussed the 
dynamic behavior of these structures from multiple 
aspects [1, 2]. In all of the available articles, the materials 
used in the structures were homogeneous. In recent years, 
engineers have improved the mechanical behavior of 
moving dynamics systems by enhancing material 
properties. To avoid possible structural limitations, the 
researchers introduced functionally graded materials, 
made from one surface to another by continuous and soft 
changes of two or more constituents [3-5].  

According to the authors' information knowledge, in 
all studies on axially graded beams, it has been assumed 
that the configuration of the system materials changes 
along with the thickness while studying the dynamic 
behavior of the graded beams despite the importance of 
grading the material properties in the axial direction. No 
technical reports. In this regard, the dynamical analysis 
and stability improvement of two-axis Rayleigh moving 
beams have been studied comprehensively, numerically, 
and analytically by applying axial graded materials. The 
effect of several vital parameters, such as axial grading, 
rotational inertia, and beam velocity on the dynamical 
properties of the axial propulsion systems are explained. 
The features of the materials change in longitudinal 
direction based on two linear and exponential profiles. 
The dynamical equation of the system is derived based 
on Hamilton's law and compared with the equations in 
the literature. In the following, the reduced-order 
equation is obtained by the Galerkin method, and the 
eigenvalue problem is applied. Then, instability zones are 
identified for the axial moving axial beam [6, 7]. 

 2. Methodology 
It is assumed that the beam or boundary conditions of 
simple supports at a constant axial velocity V move in the 
longitudinal direction and are under P axial pressure. The 
length, cross-sectional area, and moment of inertia of the 
beam are indicated by L, A, and I, respectively. The 
kinetic energies and potential of the system are expressed 
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Where where w (x, t) is the transverse beam. 
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The discretization of the system equation, the 
transverse beam displacement is given by Equation Eq. 
(5):  
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where qr is the generalized dimensional coordinate, n  
is the number of essential functions, φr  is the acceptable 
mode for the transverse displacement of the system. 
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where q is the generalized coordinate vector, M is the 
matrix of mass, C is the damping matrix, and K is the 
stiffness matrix of the system.  

 3. Results and Discussion  

To better understand the dynamical behavior of the 
system, the time response of the first generalized 
coordinate system at different speeds is shown in Fig. 1. 
Initial system conditions, the static displacement of the 
unit is assumed to be zero for the first mode. As the speed 
increases, the transverse stiffness of the system decreases 
due to centrifugal effects. The real base frequency 
becomes zero, resulting in a buckling order. In this case, 
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where q is the generalized coordinate vector, M is the 
matrix of mass, C is the damping matrix, and K is the stiffness 
matrix of the system. 

3. 3. RESULTS AND DISCUSSION 
To better understand the dynamical behavior of the 

system, the time response of the first generalized coordinate 
system at different speeds is shown in Fig. 1. Initial system 
conditions, the static displacement of the unit is assumed 
to be zero for the first mode. As the speed increases, the 
transverse stiffness of the system decreases due to centrifugal 
effects. The real base frequency becomes zero, resulting in 
a buckling order. In this case, the dynamic response of the 
system without oscillation grows more durable over time, 
and the system becomes statically unstable. By increasing the 
velocity at v = 4, the imaginary part becomes zero, and the 
beam achieves its stability. As the speed increases at v = 5, the 
actual portion of the frequency increases, while the imaginary 
part of the system’s natural frequency becomes negative, 
thereby amplifying the system’s amplitude exponentially 
with time. Unlike the divergence instability, where there is no 
oscillation. Therefore, the magnitude of the system increases 
significantly with time. As a result, flutter instability is more 
dangerous than divergence instability for axial moving 
beams. In practice, for flutter speeds, any transverse motion 
results in dynamic ups and downs in the system [14, 15].

4. 4. CONCLUSIONS
The structural dynamics and possible vibrational 

instabilities of the axially-graded moving beams have been 
studied numerically and analytically. The distribution of 
material properties of the system in a longitudinal direction is 
considered linear and exponential. By applying the Galerkin 
discretization method and the problem of eigenvalues, 
natural frequencies, dynamic response and flutter, and diurnal 
instability ranges of the system based on the combined 
effects of beam velocity, dimensional bending stiffness, 
density gradient, and modulus parameters. Mathematical 
closed-form expressions are obtained for the critical speed 
of the system. Stability maps and 2D contour diagrams of 
critical velocity are plotted in terms of axial grading and 

dimensionless bending rigidity parameters for the Rayleigh 
and Euler-Bernoulli beams.
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