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Hydrothermal performance of trapezoidal fin equipped with vortex generator and 
hole: Investigation of the effect of vortex generator and hole position
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ABSTRACT:  Today, the issue of increasing heat transfer has attracted a great deal of attention 
from researchers for the development of a variety of heat exchangers to achieve high efficiency, low 
cost, lightweight. In this paper, the hydrothermal performance is investigated by incorporating vortex 
generator and hole and their proper positioning on trapezoidal fin. For this purpose, numerical modeling 
of water flow in a rectangular channel is performed in two laminar and turbulent flow regimes and for 5 
models with different positions of vortex generator and hole in constant size geometric parameters. The 
results showed that in both flow regimes, the pressure drop was increased by inserting the hole on top 
and bottom. To create a better comparison, the ratio of the Colburn factor to friction factor was defined 
and applied in two simple and powerful ways and the best hydraulic-thermal performance was obtained 
for the trapezoidal fin with the vortex generator on the right and the hole in the middle, so that in the 
turbulent flow regime, the highest value for the ratio of Colburn factor to friction factor (simple ratio and 
power ratio) was reported as 0.0539 and 0.01504 for this position, respectively.
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1- Introduction
In recent years, the use of Vortex Generators (VGs) in 

heat exchangers is one of the effective methods in increasing 
the rate of heat transfer. On the other hand, the use of VGs 
increases the overall pressure drop. Researchers who have 
used cavities or holes in the fins found that this method can 
reduce the pressure drop and weight of the fins in addition to 
increasing the heat transfer surface [1, 2]. 

The effect of VG and hole position on a Trapezoidal Fin 
(TF) in the channel has not been investigated in the past. For 
this purpose, in the present study, 5 models with different 
VG and hole positions were designed and compared in two 
laminar and turbulent flow regimes.

2-  Methodology
2.1. Computational Domain

The geometry studied in this paper consists of a channel 
with a width (W) of 20 mm and length (L) of 500 mm 
respectively. A trapezoidal fin with corrugation amplitude (a) 
and corrugation length (l), equipped with VGs and holes are 
embedded in the center of this channel. The middle part of the 
computational domain of the channel is shown in Fig. 1. Also, 
two other parts are added at the upstream and downstream of 
this structure as inlet part and outlet part, respectively.

The geometric dimensions in Fig. 1 are optimized using the 
Taguchi method [3]. These parameters including a, l, h, t and 
w are selected as 2.5, 120, 3.75, 15 and 15 mm, respectively.

2.2. Numerical Method And Governing Equations 
In the present work, ANSYS-Fluent v.18 software is applied 

to solve the governing equations. The water flow is used in 
two laminar (200≤Re≤1600) and turbulent (4000≤Re≤10000) 
flow regimes. The governing equations are solved using 
the finite volume method, and the standard discretization 
scheme is used in the modeling following the second-order 
upwind of the momentum and energy discretization. Also, 
the SIMPLE algorithm is applied to solve the pressure and 
velocity coupling. The conservation equations for continuity, 
momentum, and energy for incompressible flow are generally 
expressed as follows:
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Also, in the current study, the RNG k–ε model [4] is used 

as the turbulent model.
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2.3. Mesh Study And Grid Dependence Check 
In the current study, irregular triangular meshes are used. 

These meshes are intensified well around the VGs and holes 
of the TF as well as near the sidewalls of the channel. As 
presented in Fig. 2, it was found that the results of the Nusselt 
number are insensitive to mesh number (with a maximum 
deviation of 0.021%) beyond the very fine set. Hence, this 
set of meshes is chosen for the current numerical simulation.

2.4. Boundary Conditions
In the inlet part, the velocity inlet condition is used with 

variable velocity values and constant bulk temperature of 
303.15 K. In the outlet part, the outlet boundary condition 
is pressure outlet (Outlet gauge pressure=0). The adiabatic 
with no-slip boundary condition is applied at the sidewalls of 
these two parts. In the middle part of the channel, a constant 
temperature of 368.15 K with no-slip boundary condition is 
used at the solid surfaces of both the channel and the TF with 
VGs. 

3- Results and Discussion 
In order to analyze the numerical results, 5 models with 

different positions of VG and hole including VG in left and 
right, hole in top and bottom and finally, both the VG and 
the hole in the middle of the TF have been compared in two 
laminar and turbulent flow regimes. Two ratios are introduced 
using the carbon factor and friction factor to compare the 
hydrothermal performance results. Fig. 3 shows different 
models of the VG and hole position on the TF.

3.1. Laminar Flow
The results of the j/f ratio of all models in the laminar flow 

are presented in Fig. 4 against the Reynolds number. It can 
be seen that j/f ratio for the position of the hole at the top and 
bottom, has the lowest values relative to the other positions 
due to high-pressure drop.

Fig. 1. The middle part of the computational domain

Fig. 2. Effect of mesh number on Nusselt number
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Fig. 3. Different models of VG and hole position (a) VG and hole 
in the middle, (b) VG on the left, (c) VG on the right, (d) Hole on 

the top, (e) Hole on the bottom
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VG and the hole in the middle of the TF have been 
compared in two laminar and turbulent flow regimes. 
Two ratios are introduced using the carbon factor and 
friction factor to compare the hydrothermal performance 
results. Fig. 3 shows different models of the VG and 
hole position on the TF. 
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number. It can be seen that j/f ratio for the position of 
the hole at the top and bottom, has the lowest values 
relative to the other positions due to high-pressure drop. 

 
Fig. 4. j/f ratio-Reynolds number in the laminar flow 
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and leading to a decrease of the pressure drop and 
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Fig. 5. (a) j/f ratio, (b) j/f1/3 ratio in the turbulent flow 

4. Conclusions 

The following conclusions can be made from the current 
study: 

• In both flow regimes, by inserting the hole in 
the top and bottom of the trapezoidal fin, the 
hydrothermal performance decreased. 

• The TF has the best hydrothermal performance 
when the VG is in the left and right and the 
hole in the middle, so that the highest values of 
0.0539 and 0.01504 are obtained, respectively, 
at the maximum and minimum Reynolds 
numbers for j/f and j/f1/3 in the turbulent flow. 
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