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ABSTRACT:  This paper deals with the time-dependent bending behavior of a rectangular viscoelastic 
plate based on the two-variable refined plate theory using the fractional calculus approach. The plate 
is fully simply-supported and is subjected to uniformly-distributed loading and the three-parameter 
merchant model is used for simulation of viscoelastic behavior. The time-domain governing equations 
are converted into frequency-domain ones using the Laplace transform and then, these equations are 
solved by the Navier method. The viscoelastic plate response is obtained using the elastic-viscoelastic 
correspondence principle so that the response of an elastic equivalent problem is extended into the 
viscoelastic problem. The results of this study, including plate deflection, and in-plane and transverse 
strains are compared with the results of the elastic model and the standard merchant model where the 
comparison of obtained results with the reference ones shows that the proposed approach has good 
accuracy. Also, the variation of deflection through the plate thickness and the effect of aspect ratio on the 
results are studied. This study shows that the proposed fractional model has the ability to simulation of 
both elastic and viscose effects simultaneously which is more compatible with the nature of viscoelastic 
materials.
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1- Introduction
Fractional calculus is a new field of mathematics in which 

the integer-order integral and derivative are extended to 
arbitrary non-integer order ones. This concept has received 
much attention in various fields of sciences in recent decades. 
Various definitions are provided for fractional derivative [1]. 
The static and dynamic analyses of viscoelastic structures 
have been investigated by many researchers [2-5]. There 
have also been several kinds of research upon using fractional 
calculus for the analysis of viscoelastic structures [6-8]. 

In the present study, the fractional Merchant model is 
employed for studying the flexural behavior of a viscoelastic 
plate based on the two-variable refined plate theory [9]. This 
theory provides accurate results for both thin and thick plates. 
To solve the obtained time-dependent equations, the Laplace 
transform method is utilized.

2- Methodology
The Riemann-Liouville fractional derivative definition is 

employed in this research:
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where α  is the order of fractional derivative. The three-
parameter fractional Merchant solid model is utilized to 
define the viscoelastic behavior. The stress-strain relation in 

this model is defined as:
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where σ  and ε  are stress and strain and 0E , 1E  , 1τ  
and η  are the viscoelastic material constants. The obtained 
governing equations are solved using the viscoelastic 
correspondence principle, the Laplace transform, and the 
Navier’s method. The time-dependent bending and shear 
components of normal deflection are obtained as follows:
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and the in-plane normal strain xε  and the transverse shear 
strain xzγ  are obtained as:
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3- Results and Discussion
A fully simply supported square viscoelastic plate 

with a length of 10m and thickness of 1m under a uniform 
distributed loading of 10N/m2 is considered. The obtained 
deflection of the plate based on classical and refined plate 
theories is compared with existing results [2] which confirms 
the accuracy of the proposed approach (Fig. 1). 

Fig. 2 illustrates the variation of plate deflection on the 
x-axis for different values of α in two times of 10s and 50s. 
Similarly, the variation of transverse shear strain along the 
plate thickness is depicted in Fig. 3. It is seen that this strain 
has a parabolic variation through the plate thickness, as 
expected.  

 
Fig. 1. The deflection obtained by the classical and two-
variable plate theories in elastic and viscoelastic cases. 

 

  

 
(a) 

 
(b) 

Fig. 2. The plate deflection considering the two-variable 
plate theory and different α, a) t=10s and b) t=50s . 

 

  

 
(a) 

 
(b) 

Fig. 3. The in-plane shear strain considering the two-
variable plate theory and different α, a) t=10s and b) t=50s. 

 

Fig. 1. The deflection obtained by the classical and two-variable 
plate theories in elastic and viscoelastic cases.

Fig. 2. The plate deflection considering the two-variable plate 
theory and different α, a) t=10s and b) t=50s.

Fig. 3. The in-plane shear strain considering the two-variable 
plate theory and different α, a) t=10s and b) t=50s.
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4- Conclusions
In this study, the bending analysis of the viscoelastic plate 

based on a fractional derivative model was conducted. The 
two-variable plate theory was employed in the formulation 
which provided accurate results for both thin and thick 
plates. By using the Riemann-Liouville fractional derivative 
definition, the formulation was greatly simplified and the 
viscoelastic behavior was simulated more realistically. 
Decreasing the fractional derivative order leads to a lower 
damping property and consequently, the final amount of plate 
deflection and strain happens sooner. It can be concluded that 
the approach utilized in this study is very accurate and can be 
employed to analyze more complex problems, and it also may 
lead to faster solution procedure due to the fewer number of 
unknown parameters used in the formulation.
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