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Stability and bifurcation of a rotating blade with varying speed 
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ABSTRACT:  In this paper, the nonlinear vibration of a rotating blade with varying rotating speeds 
is investigated. The rotating blade is considered as a rotating cantilever Euler-Bernoulli beam without 
geometric nonlinearity. The angular velocity is assumed as a constant value which is fluctuated with 
small amplitude. The nonlinear partial differential equations of the rotating cantilevered beam are derived 
in three-dimensional using Hamilton’s principle. Then, the Galerkin discretization method is applied to 
the nonlinear partial differential equations to obtain three nonlinear ordinary differential equations. The 
method of multiple scales is utilized to derive six first-order ordinary differential equations to describe 
the time variation of amplitudes and phases of interacting modes. The stability and bifurcation of 
fixed points are obtained by using the eigenvalues of the Jacobian matrix of the modulation equations. 
Numerical results demonstrated that near the primary resonance and internal resonance the fixed points 
lose the stability through the saddle node bifurcation. Moreover, the transfer energy among the modes 
and jump in amplitude of modes occur in frequency response at the different cases of internal resonance. 
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1- tIntroduction
Rotating blades are used in wind and gas turbines 

and they are designed according to the flexibility of the 
blade, mathematical modeling of the blade under various 
conditions such as aerodynamic loads or high temperature. 
Some researchers have studied the nonlinear vibrations of 
the rotating blade [1-9]. Also, time-varying rotational speed 
can change the steady-state amplitudes of the rotating beam 
[2]. 

In this study, the axial, lateral and transverse vibrations of 
the rotating beam are investigated under the harmonic angular 
velocity. When the internal resonance conditions are imposed 
between the three modes, the energy is transformed from the 
excited mode to other modes. Moreover, the amplitude and 
frequency of harmonic term of angular velocity can influence 
the stability of the steady-state solutions.    

   
2-  Methodology

In order to study the nonlinear vibration of rotating beam, 
a rotating beam model is presented in Fig. 1. The basic 
assumptions are considered as follows: 1- Euler-Bernoulli 
beam theory is used in this analysis and there is no shear stress. 
2- Rotational speed is composed of constant value ( 0Ω ) as 
well as small amplitude with harmonic term ( )cos( 12 tΩΩ ). 
3- The von-Karman strain-displacement is employed.

  The dimensionless equations are derived using the 
extended Hamilton’s principle as follows:
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where, ds uu , and wv, are respectively the static and 
dynamic axial displacements and lateral and transverse 
displacements. Applying the Galerkin method yields:

( , ) ( ) ( ), ( , ) ( ) ( ),
( , ) ( ) ( ),
du x t G x p t w x t H x q t

v x t S x r t
= =
= �

(4)

The Ordinary Differential Equations (ODE’s) are obtained 
in three directions. 
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The ordinary Ordinary differential Differential 
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By substituting Eq. (4) in ordinary differential 
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By determining the secular terms and applying the 
solvability conditions, the modulation equations are 
obtained for different cases. The fixed points of 
equations are obtained and the stability of them is 
shown in numerical simulations.  
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By determining the secular terms and applying the 
solvability conditions, the modulation equations are 
obtained for different cases. The fixed points of equations 
are obtained and the stability of them is shown in numerical 
simulations. 

3- Results and Discussion
The stability of fixed points is investigated for the 

rotating blade with time-varying angular velocity. The 
dynamic behavior of the rotating beam is studied in axial, 
lateral and transverse directions. The fixed points or steady-
state amplitudes of rotating beam lose stability through the 
saddle-node or Hopf bifurcations. Modal interaction has 
occurred between the axial, lateral and transverse modes in 
the presence of internal resonance condition and external 
resonance. Fig. 2 shows the steady-state amplitudes versus 
the 2Ω  for
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nonlinearity is caused from by the von karman Karman 
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, the axial and transverse modes are excited and 
jumps occur at SN points.

4- conclusions
In this study, the nonlinear vibration of rotating beam is 

analyzed for time-varying spinning speed. The nonlinearity 
is caused by the von Karman strain-displacement relations 
and harmonic term of angular velocity. The governing 
equations are derived in axial, lateral and transverse 
directions using Hamilton’s principle. The steady-state 
amplitudes in three dimensions are presented in numerical 
simulations. Results show the modal interaction and jump 
in amplitudes in the presence of 1:1 and 2:1 internal 
resonances.    

 

Fig. 1. Rotating Euler-Bernoulli beam with varying 
rotation speed Ω(t) 

 

  

Fig. 1. Rotating Euler-Bernoulli beam with varying rotation 
speed Ω(t)

 

Fig. 2. amplitude of axial, lateral and transverse modes of 
beam versus Ω𝟐𝟐 amplitude 

 

  

Fig. 2. amplitude of axial, lateral and transverse modes of beam 
versus  amplitude

 

Fig. 3. amplitude of axial, lateral and transverse modes of 
beam versus Ω𝟐𝟐 amplitude 

 

Fig. 3. amplitude of axial, lateral and transverse modes of beam 
versus  amplitude
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