
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 53(5) (2021) 681-684
DOI: 10.22060/mej.2020.17544.6617

Quantifying of Viscous Fingering Instability in Porous Media 
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ABSTRACT: In this paper, nonlinear simulation of viscous fingering instability of miscible 
displacement involving nanofluid is investigated. Using vorticity and stream functions and the spectral 
method governing equations are obtained. Due to the fractality of fluid-fluid interface in instability 
phenomena, by using box counting method, its fractal dimension is calculated in different parameters 
such as deposition rate, mobility ratio and diffusion rates. The results show that increasing the deposition 
rate reduces the complexity of finger patterns and the diffusion rate of nanofluid has no effect on 
complexity of finger patterns while increasing the diffusion rate of displaced fluid has significant effect 
on patterns and makes it more complicated. The fractal analysis also shows that the effect of mobility 
ratio depends on the deposition rate.  By considering deposition rate, although the mobility ratio has 
no effect on fractal dimension and effective time is constant and equal to 275, start time of instability 
is delayed by 25 units. It can be concluded that fractal analysis of viscous fingering phenomena can be 
considered as one of the instability characteristics. 
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1- Introduction
Viscous fingering instability is a natural phenomenon and 

takes place when a less viscous fluid is injected into a more 
viscous one leading to the formation of fingerlike patterns 
that affect the sweep efficiency of the miscible displacement 
process [1]. Examples of these processes are secondary and 
tertiary oil recovery, fixed bed regeneration in chemical 
processing, soil remediation and filtration. Due to the 
complexity in the appearance of fingerlike patterns, fractal 
analysis can be conducted. Fractal, introduced by Mandelbrot 
in 1963 [2] is a branch of geometry that explains complex, 
rough and random shapes and is close to several important 
geometrical concepts such as self-similarity, symmetry, 
periodicity and scale invariance. 
 Viscous fingering instability is a natural phenomenon and was 
first introduced by Hill [1] and thereafter many researchers 
have studied different aspects of instability. Injection of 
nanofluid in porous media is another aspect that has received 
very limited attention. Ghesmat et al. [3] conducted linear 
analysis of nanoparticles on the dynamics of miscible Hele-
Shaw flows and Dastvareh and Azaiez numerically simulated 
instabilities of nanofluid flow displacements in porous media 
[4]. 

Based on the literature, quantity measuring parameters are 
limited to mixing length, contact area and sweep efficiency. In 
this paper, to characterize the complexity of fingers and their 
patterns, fractal analysis of viscous fingering is conducted.

2- Methodology
Fig. 1 shows a horizontal plate with width and length L  

used in this paper.  It has been assumed that an incompressible 
fluid with viscosity 0aµ  and initial concentration 0aC  is injected 
from the left-hand side along x  axis with constant velocity U  
and is attempted to displace the second fluid with viscosity 0bµ  
and initial concentration 0bC . Fluid (A) contains nanoparticles 
with the concentration 0nC  and viscosity 0nµ . The equation of 
motion and governing equations are shown as follows:

In this paper, we follow the numerical scheme described in 
[4]. The equations are transformed in Hartley space using the 
Hartley transform. A random noise of very small magnitude 
in the initial condition is added to the concentration at the 
interface in the y-direction, causes instability to start and 
fingers to grow. 
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Fig. 1. Schematic geometry of the problem
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Fig. 2. Mixing length for 2rA == , 1b == , 1n == , 1nR == ,

6bR == , 2aR == , 0.01depDa == in comparison with [5] 

   

 

Fig. 3. Variation of fractal dimension with time 

 
Fig. 4. Fractal dimension for 1nR == , 1b == and 1n ==  
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Fractal dimension describes the irregular or fragmented 
shape of complex objects. In order to use fractal analysis, 
the concentration contours should all be converted to the 
fluid interface. The binary images are analyzed by the 
implementation of the box-counting method, one of the most 
widely used fractal dimensions.

3- Discussion and Result 
In order to validate the numerical simulation, mixing 

length is compared with [5]. Fig. 2 demonstrates the variation 

of mixing length with time and the result shows good 
agreement. 

Concentration contour of displacement fluid is superposed 
with variation of fractal dimension with time and is plotted in 
Fig. 3. It can be concluded from the figure that the fractal 
dimension of the image is affected by the shape and growth 
of the fingers. 

Fig. 4 illustrated variation of fractal dimension with 
time for different deposition rates. It is clear that the fractal 
dimension increases and effective time range decrease as 
deposition rate is increased. It can be concluded that presence 
of nanoparticle deposition leads to simpler finger patterns.

Fig. 5 shows the effect of nanofluids viscosity ratio. 
According to this figure, the increase of nR H  has no 
significant effect on fractal dimension and the effective 
time range remains constant. In other words, the decrease of 
nanofluids viscosity ratio only causes finger patterns to grow 
at earlier times. Further analysis for special case 0depDa =   
shows that fractal dimension decreases as nR  is increased. It 
means that the presence of nanoparticle deposition causes the 
effect of nR  decrease with time. 

Fig. 6 depicts the variation of fractal dimension with time 
for different nanoparticle diffusion rates. It can be seen nδ  
has a slight effect on fractal dimension.
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Fig. 4. Fractal dimension for 1nR =  ,  1bδ =  and  1nδ =
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Fig. 5. Fractal dimension for 1bδ =  , 1nδ =  and 0.01depDa =
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Fig. 3. Variation of fractal dimension with time
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Table 2 Performance comparison of the proposed combined 
cycle in this work with [4]

HOW TO CITE THIS ARTICLE
M. R. Shahnazari, A. Saberi, Quantifying of Viscous Fingering Instability in �orous 
�edia, Amirkabir J. Mech. Eng., 53(5) (2021) 681-684.

DOI: 10.22060/mej.2020.17544.6617

4. Conclusions
In this study, nonlinear simulation of the viscous fingering 

instability of a nanofluid displacement through a homogenous 
porous medium is conducted.

The study has focused on the fractal analysis of the 
mentioned instability. In addition, effect of different 
parameters on fractal dimension was investigated. The results 
show that by an increment in the value of the deposition rate, 
the fractal dimension and also effective time range increases. 
The variation of nanofluids viscosity ratio, in presence of 
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Fig. 6. Fractal dimension for 1bδ =  ,  1nR =  and  0.01depDa =

nanoparticle deposition, has no effect on fractal dimension. 
It also should be noted that the growth of fingers is delayed 
25 units of time as nanofluid viscosity ratio increases 2 units. 
In the absence of nanoparticle deposition, fractal dimension 
decreases as nR is increased. Also fractal analysis of viscous 
fingering instability in different values of nanoparticle and 
displaced fluid diffusion rate shows that although nδ  has a 
slight effect on fractal dimension, bδ has significant effects. 
Increases in bδ cause a decrease in fractal dimension which 
means less complicated finger patterns. 
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