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Numerical simulation of mixed convection of Bingham fluid between two coaxial 
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ABSTRACT: In this paper, mixed convection of Bingham fluid between two coaxial cylinders has 
been studied numerically without using any regularization method. The temperature of the inner rotating 
cylinder is higher than the temperature of the outer stationary cylinder. The finite volume method and 
non-iterative PISO algorithm have been employed to solve the problem. One of the OpenFOAM solvers, 
icoFoam, has been modified for solving the exact Bingham model. After validating the modified solver, 
it has been used to solve the problem for the following ranges of conditions: Reynolds number, Re=10, 
Prandtl number, Pr=10, Grashof number, Gr=500, Bingham number, 0≤Bn≤1000, and aspect ratio (AR) 
of 0.1. The effects of the Bingham number on flow and heat transfer characteristics such as the shape and 
size of the unyielded regions, streamline contours, the local and mean Nusselt number, and the torque 
coefficient have been investigated. The mean Nusselt number and the torque coefficient decreases and 
increases, respectively, when the Bingham number increases. The variation range of the local Nusselt 
number and dimensionless tangential stress on the inner wall decrease with the Bingham number.
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1- ntroduction
The Bingham fluid is a non-Newtonian fluid that behaves like 
a solid when the applied stress is less than a certain value, 
τy, and yields when the stress exceeds τy; After yielding, 
the relation between stress and strain is linear. Because 
of this behavior, the constitutive equation of a Bingham 
fluid is discontinuous. The main issue in the numerical 
simulation of a Bingham flow is the discontinuity of the 
constitutive equation. The regularization method is the most 
straightforward way to solve the issue. The discontinuous 
constitutive equation is replaced by a smooth equation in the 
regularization methods. The troublesome in convergence, the 
inaccuracy in the distinguishing of unyielded regions, and 
the high errors at large   Bingham numbers are some of the 
weaknesses of the regularization methods [1-3]. Employing 
variational inequalities theory [4] is a way to study Bingham 
flow without any regularization. So far, almost all numerical 
simulations of the exact Bingham flow have been done by 
in-house code and for simple geometries. The first aim of the 
article is the creation of a solver that solves the flow and heat 
transfer of a Bingham fluid with the exact model regardless 
of geometric complexities. For this purpose, one of the 
OpenFOAM solvers has been modified. 
After validation of the solver with [5], it has been employed 
to study mixed convection of Bingham fluid between two 
coaxial cylinders. The effect of Bingham number on the flow 
and heat transfer characteristics such as the size and shape of 
the unyielded regions, the streamlines contours, the velocity 

variations, the local and mean Nusselt numbers and the 
torque coefficient have been investigated for the following 
conditions: Re=10, Pr=10, Gr=500, AR=0.1 and 0≤Bn≤1000. 

2- Problem Statement and Governing Equations
The space between two coaxial cylinders is filled with the 
Bingham fluid, as shown in Fig. 1. The hotter inner cylinder 
rotates with constant velocity, and the outer wall is at rest. 
The dimensionless form of the governing equations and the 
boundary conditions are written as follows:
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Fig. 1. The schematic diagram of the physical model. 

 

Fig. 2. The unyielded regions for Gr=500, Re=10, Pr=10, 
and different Values of Bingham number. 
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Fig. 3. The variation of dimensionless tangential velocity at 
θ=180o for Gr=500, Re=10, Pr=10, and different Bingham 

numbers. 
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Fig. 4. The variation of the local Nusselt number on the 
inner wall for Gr=500, Re=10, Pr=10, and different values 

of Bingham number. 
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Fig. 4. The variation of the local Nusselt number on the 
inner wall for Gr=500, Re=10, Pr=10, and different values 

of Bingham number. 
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3- Results and Discussion
Fig. 2 shows the distribution of the unyielded regions for 
different Bingham numbers. There are two kinds of unyielded 
regions: the dead zones in which the fluid is at rest, and the 
plug zones in which the velocity gradient is zero. At Bn=1, the 
small unyielded regions scatter throughout the domain. The 
regions merge and become larger as the Bingham increases. 
At Bn=1000, the buoyancy effect is negligible, and the dead 
area attached to the outer wall has a constant thickness. 

The dimensionless tangential velocity along θ=180o is plotted 
in Fig. 3. At Bn=0, the velocity magnitude first decreases then 
increases (due to buoyancy) and again decreases to reach zero 

as one moves from the outer to the inner wall.  At the low 
Bingham numbers, the plug zones are formed in the middle 
of the annuls and velocity gradient approaches zero. Fig. 3 
is compatible with Fig. 4. For example, the plug zone on the 
left side of the annulus at Bn=100 does not stick to the outer 
wall and a thin layer of fluid yields in this region. The region 
is evident in Fig. 3, where the velocity gradient of Bn=100 is 
not zero for the small interval near r*=1. 

The distribution of the local Nusselt Number on the inner 
wall is shown in Fig. 4 for different Bingham numbers. The 
warm fluid moves upward due to the buoyancy force, so 
the minimum value of the temperature gradient or Nusselt 
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Bingham number 

number occurs at the top of the annulus. Vice versa, the 
maximum value of the Nusselt number occurs at the bottom. 
As the Bingham number increases and the unyielded regions 
are formed, heat transfer occurs more uniformly, and the 
variation of the Nusselt number decreases. The mean Nusselt 
number decreases with the Bingham number. 
The distribution of dimensionless tangential stress, τrθ

*, 
on the inner wall is plotted in Fig. 5 for different Bingham 
numbers. The maxim τrθ

* occurs at θ=180o due to the exitance 
of opposite buoyancy. By comparing Figs. 2 and 5, one can 
figure out that the zig-zagging behavior of τrθ

* at Bn=100 

is due to the formation of the unyielded layer there. As the 
Bigham number increases, Bn=100 and 1000, the direction of 
τrθ

* does not change, and its variation decreases.

4- Conclusions
In this article, a solver, which solves the flow and heat transfer 
of Bingham fluid with the exact model, has been obtained. 
As a numerical experiment, mixed convection of Bingham 
fluid between two coaxial cylinders has been studied. The 
flow and heat transfer characteristics have been presented 
and discussed.

References
[1] I.A. Frigaard, C. Nouar, On the usage of viscosity 

regularisation methods for visco-plastic fluid flow 
computation, Journal of Non-Newtonian Fluid 
Mechanics, 127 (2005) 1-26.

[2] R.R. Huilgol, G.H.R. Kefayati, Natural convection 
problem in a Bingham fluid using the operator-splitting 
method, Journal of Non-Newtonian Fluid Mechanics, 
220 (2015) 22-32.

[3] A. Syrakos, G.C. Georgiou, A.N. Alexandrou, 
Performance of the finite volume method in solving 
regularised Bingham flows: Inertia effects in the lid-
driven cavity flow, Journal of Non-Newtonian Fluid 
Mechanics, 208-209 (2014) 88-107.

[4] R. Glowinski, J.L. Lions, R. Tremoliers, Numerical 
Analysis of Variational Inequalities., North-Holland 
Publishing Company Amsterdam. New York. Oxford, 8 
(1981).

[5] O. Turan, A. Sachdeva, N. Chakraborty, R.J. Poole, 
Laminar natural convection of Bingham fluids in a 
square enclosure with differentially heated side walls, 
Journal of Non-Newtonian Fluid Mechanics, 166 (2011) 
1049-1063.



This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k


	Blank Page - EN.pdf
	_GoBack




