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ABSTRACT: The inertial navigation system is a dead reckoning system, thus initial alignment for an 
inertial navigation system plays an important role in the accuracy of it. In this paper, a novel approach 
for initial alignment in an inertial navigation system with increased speed and accuracy is proposed. 
This method has two stages, which integrates the Kalman filter and a high order sliding mode observer. 
In the inertial navigation system, leveling misalignment angles reach the steady-state faster than the 
azimuth misalignment angle does, which means the azimuth alignment takes a considerable time for 
initial alignment. Therefore, in this paper at the first stage estimations of state variables of the system are 
obtained using the Kalman filter and whenever all variables (except azimuth alignment) reach steady-
state, the second stage begins. In the second stage, the estimation which is obtained by the Kalman filter 
is used as the input to design an equivalent system with unknown inputs for inertial navigation system. A 
high-order sliding mode observer is then used to estimate the states of a system with an unknown input 
for estimating the azimuth alignment angle. This method not only increases the speed of estimation but 
also has comparable accuracy.
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1. Introduction
In this paper, a new method is presented based on the 

Kalman filter and the high order sliding mode observer to 
estimate the initial alignment. In fact, the convergence error 
of azimuth misalignment is considered as an unknown input 
for a system equivalent to the INS error system after applying 
the Kalman filter and since the leveling misalignment is 
convergent. It is then used to estimate the new system states of 
high order sliding mode observer. Bejarano and Fridman [1] 
present the high order sliding mode observer for simultaneous 
estimation of system states and unknown input. 

In this paper, the method presented by Bejarano and 
Fridman [1] and its combination with Kalman filter is used 
to estimate the initial alignment of the inertial navigation 
system. In summary, the innovations and results of this paper 
include the following:

• Providing an equivalent model for INS error system, 
using the initial estimation obtained from the Kalman filter to 
establish the conditions required for the convergence of the 
second-class filter, i.e. the high order sliding mode observer.

• Providing a two-step method for estimating high 
precision initial alignment and fast convergence time.

• Increasing accuracy and reducing estimation 
convergence time.

• The robustness of the filter provided against system 
noise and disturbances.

2. Methodology
By selecting state variables as such 
[ , , , , , , , , , ]T

N E N E D N E N E Dx v vδ δ ψ ψ ψ ε ε ε∇ ∇=   and considering 
that only the velocity error in INS error equations can be 
measured, INS error equations will be in the form of Eqs. (1-
3). These equations have been presented in [2].

where vδ  ,  r   and    are the vector of velocity error, 
position, and orientation respectively, ∇   is the acceleration 
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error vector,  ε  is the gyro drift vector,  g  is the acceleration 
of gravity vector, and   is the earth rotation rate vector.

The purpose of this section is the presentation of an 
equivalent model for INS error system described in Eq. (1). 
The difference between this model and the model presented 
in Eq. (1) is that in this model the estimation obtained from 
the Kalman filter is used as the measured input. In fact, in the 
first step, system state variables of the Eq. (1) are estimated 
using the Kalman filter and this estimation is used as the 
output of the new system.

In this model, some system state variables of the Eq. (1) 
along with the estimation error of the azimuth are considered 
as unknown inputs for the new system. Thus, the new system 
model will be as Eq. (4).

where x  is the vector of state variables and d   is the vector 
of unknown inputs that are considered as Eqs.(5) and (6).
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In the vector of unknown inputs, the component d
Dψ   

is related to the azimuth convergence error. In fact, as 
mentioned, the new filter is applied to the equivalent system 
by applying the Kalman filter after the convergence of 
leveling misalignment error, the acceleration error and the 
gyro drift. So, the azimuth estimation error is considered as 
an unknown input.

According to the Eqs. (1-3), the matrices A and G are as 
the Eq. (7).

The measured output in this system can include all the 
states of the system because in the first stage, the states of 
the main system are estimated using the Kalman filter and 
only the estimation of azimuth error is not available. But this 
problem is also solved by considering the azimuth estimating 
error as unknown input.  Output matrices are considered as 
Eq. (8).
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Fig. 1. Overall view of sliding mode observer-based on Kalman filter
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Fig. 2. Comparison of azimuth error estimation by the filter introduced in this paper and the filter presented by Du and Yang 
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designed in this paper consists of two steps. In the first step, 
the misalignment error is estimated by the Kalman filter, 
and after convergence, the second step of the filter, which 
is a high order sliding mode observer, is used to estimate the 
azimuth error.

Due to the simulation results, the convergence time of 
the filter designed in this paper is much less than the filters 
presented in other studies. One advantage of the filter 
presented in this paper is its robustness against noise and 
disturbance.
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3. Discussion and Results
In this paper, a new method is presented based on the high 

order sliding mode observer and Kalman filter for estimating 
the states of the INS error system. The general view of the 
observer introduced in this paper is shown in Fig. 1.

To simulate the method presented in this paper, the system 
expressed in Eq. (1) is expressed as Eq. (9) by considering the 
noise in the equations and the output of system. 
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where  and  are Gaussian stochastic white noise with mean 
zero and covariance matrix Q and R respectively as Eq. (10). 
Also in this simulation, local latitude is considered to be 39.9 
degrees and initial misalignment error for all three angles is 
considered to be 1 degree.
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The results of the filter simulation presented by Du and 
Yang [3] in the presence of noise and its comparison with the 
filter presented in this paper, are shown in Fig. 2 to estimate the 
azimuth error. the convergence time for the filter presented by 
Du and Yang [3] is about 70 seconds and its accuracy is about 
0.02 degrees. While the filter convergence time presented in 
this paper is about 42 seconds and its accuracy is about 0.003 
degrees.

4. Conclusions
In this paper, a new method is presented for reducing 

convergence time and increasing accuracy to estimate the 
initial alignment of the inertial navigation system. The filter 

Fig. 2. Comparison of azimuth error estimation by the filter 
introduced in this paper and the filter presented by Du and 

Yang [3]

 

 
Fig. 1. Overall view of sliding mode observer-based on Kalman filter 

 

(9) 0

0

x A x w
y C x v
= +
= +

 

 

(10) 

( ) ( )
( ) ( ) ( )

( ) ( )

2 2

2 2 2

2 2

[ 50μg/Hz    50μg/Hz

 0.01 /hr/Hz  0.01 / hr/Hz   0.01 / hr/Hz   0 0 0 0 0]

0.1m/s   0.1m/s

Q diag

R diag

=

  

 =  

 

 
Fig. 2. Comparison of azimuth error estimation by the filter introduced in this paper and the filter presented by Du and Yang 

[3] 
 

HOW TO CITE THIS ARTICLE
S. Khankalantary, K. Heidari, M. Hajizadeh, H. Mohammadkhani, Fast initial 
alignment for inertial navigation system based on high order sliding mode 
observer and Kalman filter, Amirkabir J. Mech. Eng., 53 (6) (2021) 845-848.

DOI: 10.22060/mej.2020.18407.6815



This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k


	Blank Page - EN.pdf
	_GoBack




