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Free vibration and flexural-torsional stability analyses of axially functionally graded 
tapered thin-walled beam resting on elastic foundation
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ABSTRACT: The thin-walled beams are widely adopted in different structural components ranging 
from civil engineering to aeronautical applications due to their conspicuous characteristics. A slender 
thin-walled beam loaded initially in compression may buckle suddenly in flexural–torsional mode since 
its torsional strength is much smaller than bending resistance. In this paper, flexural-torsional stability 
and free vibration analyses of axially functionally graded tapered I-beam resting on Winkler elastic 
foundation are assessed. Considering the coupling between the flexural displacements and the twist 
angle, the motion equations are derived via Hamilton’s principle in association with Vlasov’s thin-walled 
beam theory. The differential quadrature method is applied to solve the system of differential equations 
and to acquire the critical buckling loads and natural frequencies. To validate the obtained results, at 
first, homogeneous tapered I-beam in the absence of elastic foundation was analyzed and compared 
with a finite element solution using ANSYS and other available benchmarks. Afterward, the numerical 
outcomes for axially graded non-prismatic I-beam resting on elastic foundation are reported in graphical 
form to find out the impacts of axial load position, beam’s length, end conditions, web and flanges 
tapering ratio, material gradient index, Winkler parameter and spring position on the non-dimensional 
buckling loads and vibration frequencies. 
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1. Introduction
In recent years, by improvements in fabrication process, 

structural members have been possible with mixed materials 
such as wood, steel and composite. Functionally Graded 
Materials (FGMs) are a new class of advanced materials made 
up by gradually and smoothly changing the composition of 
two or more different materials in any desired direction. The 
use of non-prismatic elements made up of FGMs during 
the past twenty years has been increasing in complicated 
mechanical components such as turbine blades, rockets, 
aircraft wings and space structures due to their conspicuous 
characteristics such as high strength, thermal resistance and 
optimal weight distribution. 

Regarding this, in this paper, the flexural-torsional 
free vibration and stability analyses of axially functionally 
graded web and/or flanges tapered I-beam resting on Winkler 
foundation are investigated using the Differential Quadrature 
Method (DQM).

2. Governing Equations
As shown in Fig. 1, a straight tapered thin-walled beam 

resting on Winkler foundation is taken into account. The 
right hand Cartesian coordinate system, with x the initial 
longitudinal axis measured from the left end of the beam, 
the y-axis in the lateral direction and the z-axis along the 
thickness of the beam is considered. The origin of these axes 
(O) is located at the centroid of doubly-symmetric I-section.
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Based on the Vlasov model [1] for a non-uniform torsional 
loading condition, in the context of small displacements, the 
displacement field for an arbitrary point of the beam can be 
expressed as follows:

(1)
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where , ,U V W   stand for to the axial, lateral and vertical 
displacement components along the , ,x y z   direction, 
respectively, whereas , ,u v w   are the kinematic quantities 
defined at the reference surface, the term ( , )y zω   refers to 
the warping function for the variable cross-section, defined 
by means of Vlasov torsion theory [1], and θ   is the twisting 
angle.  The equations of motion and end conditions for the free 
vibration of AFG tapered I-beam resting on uniform Winkler 
foundation are derived using Hamilton’s principle. In the 
absence of external forces, the principle can be written as:

(2)
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where t1 and t2 are two arbitrary time variables, and Π   is 
the total potential energy. δ  denotes a virtual variation.   lU  and 0U   are the elastic strain energy and the strain energy 
due to effects of the initial stresses, MU   the kinetic energy 
under harmonic forces, and Uf is the energy corresponding 
to a uniform elastic foundation. Their relationships for each 
term of the total potential energy are developed separately in 
the following:
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where L   and  A  stand for the beam length and the cross-
sectional area, respectively, ρ  and ω   indicate the material 
density and the natural frequency (circular). Moreover, ( 

, ,i i i
xx xz xyδε δγ δγ ) and ( * * *, ,xx xz xyδε δγ δγ  ) refer to the variation of 

the linear and non-linear part of the strain tensor, respectively; 
whereas  , ,xx xz xyσ τ τ  denote the Piola–Kirchhoff stress tensor 
components, and 0 0 0, ,xx xz xyσ τ τ   are the initial axial and shear 
stress conditions. In Eq. (3), yk   and zk   denote Winkler 
foundation modulus for the lateral and transverse translations 

at the point M.  Regarding Eq. (1), the two components of 
vertical and lateral displacements at point M can be found as 
follows:
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In this study, it is contemplated that the concentrated 
compressive axial load (P) is applied at end beam without an 
eccentricity from centroid along z-axis. Therefore, an external 
bending moment occurs about the major principal axis ( *

yM ) 
and the magnitude of bending moment with respect to z-axis 
( *

zM  ) is equal to zero.  Regarding this, the most general 
case of normal and shear stresses associated with the external 
bending moment *

yM   and shear force Vz are considered as
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Based on the assumption of a Green’s strain-tensor, the 
linear and non-linear parts of the kinematic relations are as 
follows [2, 3]
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Based on the equation presented above, the first variation 
of the total potential energy contains the virtual displacements 
( , , ,u v wδ δ δ δθ ) and their derivatives. After appropriate 
integrations by parts, and mathematical simplifications, we 
get the following governing equations of motion:
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increases the stability strength and enhances. It can also be 
stated that for 0.5 1.5n≤ ≤  , the non-dimensional critical 
load and vibrational frequency parameters increase obviously 
whereas, for n>1.5, these parameters increase slightly and 
approaches maximum magnitude. It is also found out that 
for any value of power-law exponent and Winkler parameter, 
the buckling load and natural frequency of prismatic beam 
and double tapered one with is least and most, respectively. 
The numerical outcomes show that the elastic foundation 
increases the stability and vibrational characteristics of 
axially non-homogeneous and homogeneous I-beams with 
constant or variable cross-section.
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3. Results and Discussion 
To solve the coupled equations of motion and, the DQM 

is employed to calculate the natural frequency and critical 
buckling load of AFG web and flanges tapered I-beam 
resting on uniform Winkler foundation subjected to different 
end conditions. In order to validate the acquired outcomes of 
methodology presented herein, comparisons have been carried 
out with those estimated via a finite element formulation by 
Soltani et al. [3], and ones obtained by ANSYS software [4].  
In the case of simply-supported member, the non-dimensional 
flexural-torsional buckling load parameter variation versus 
the power-law exponent for different values of elastic 
foundation constants where in numerical computations 
a=a2=0.5 is selected and load is applied on the top flange of 
right end section, is presented in Fig. 2.

Next, the influence of Winkler parameters (ranging from 
0 to 90) on the variations of the non-dimensional natural 

frequency ( norω ) of simply supported thin-walled beam 
with varying I-section made up of homogeneous material 
and axially functionally one (n=1.5) with respect to tapering 
ratios (varying from 0 to 1.0) is plotted in Fig. 3. In this stage, 
the non-uniform beam having equal web height and flanges 
width tapering ratios (a= a2) is perused. 

4. Conclusions
The present research deals with the flexural-torsional 

buckling and free vibrational analyses of AFG tapered 
doubly-symmetric I-beam resting on elastic foundation. 
Based on Vlasov’s theory for thin-walled cross-section, the 
governing equations of motion are derived via the Hamilton 
principle. The effect of axial load eccentricity is also 
considered in the formulation. The differential quadrature 
method is then used to estimate the buckling load and natural 
frequency for web and flanges tapered beam. According to 
the obtained numerical outcomes, it is concluded that that 
for both uniform and non-uniform I-beams and all values of 
Winkler foundation constants, as non-homogeneity parameter 

Fig. 3. Effect of tapering ratios on non-dimensional natural 
frequency of simply supported beam for different values of 

Winkler foundation modulus and gradient indexes
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