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Free vibration and flexural-torsional stability analyses of axially functionally graded
tapered thin-walled beam resting on elastic foundation
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ABSTRACT: The thin-walled beams are widely adopted in different structural components ranging
from civil engineering to aeronautical applications due to their conspicuous characteristics. A slender
thin-walled beam loaded initially in compression may buckle suddenly in flexural-torsional mode since
its torsional strength is much smaller than bending resistance. In this paper, flexural-torsional stability
and free vibration analyses of axially functionally graded tapered I-beam resting on Winkler elastic
foundation are assessed. Considering the coupling between the flexural displacements and the twist
angle, the motion equations are derived via Hamilton’s principle in association with Vlasov’s thin-walled
beam theory. The differential quadrature method is applied to solve the system of differential equations
and to acquire the critical buckling loads and natural frequencies. To validate the obtained results, at
first, homogeneous tapered I-beam in the absence of elastic foundation was analyzed and compared
with a finite element solution using ANSYS and other available benchmarks. Afterward, the numerical
outcomes for axially graded non-prismatic I-beam resting on elastic foundation are reported in graphical
form to find out the impacts of axial load position, beam’s length, end conditions, web and flanges
tapering ratio, material gradient index, Winkler parameter and spring position on the non-dimensional
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1. Introduction

In recent years, by improvements in fabrication process,
structural members have been possible with mixed materials
such as wood, steel and composite. Functionally Graded
Materials (FGMs) are a new class of advanced materials made
up by gradually and smoothly changing the composition of
two or more different materials in any desired direction. The
use of non-prismatic elements made up of FGMs during
the past twenty years has been increasing in complicated
mechanical components such as turbine blades, rockets,
aircraft wings and space structures due to their conspicuous
characteristics such as high strength, thermal resistance and
optimal weight distribution.
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Regarding this, in this paper, the flexural-torsional
free vibration and stability analyses of axially functionally
graded web and/or flanges tapered I-beam resting on Winkler
foundation are investigated using the Differential Quadrature
Method (DQM).

2. Governing Equations

As shown in Fig. 1, a straight tapered thin-walled beam
resting on Winkler foundation is taken into account. The
right hand Cartesian coordinate system, with x the initial
longitudinal axis measured from the left end of the beam,
the y-axis in the lateral direction and the z-axis along the
thickness of the beam is considered. The origin of these axes
(O) is located at the centroid of doubly-symmetric I-section.
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Fig. 1. (a) Thin-walled beam with doubly-symmetric cross-section, (b) Coordinate system and notation of displacement parameters
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Based on the Vlasov model [ 1] for a non-uniform torsional
loading condition, in the context of small displacements, the
displacement field for an arbitrary point of the beam can be
expressed as follows:

dv(x) dw(x)
Ux,y,z)=u(x)-y i
do(x)

dx
Vx,y,z)=v(x)—-z08(x)

Wx,y,z)=w(x)+y0(x)

_a)(y 32)

(1)

where U,V ,w  stand for to the axial, lateral and vertical
displacement components along the x,y,z direction,
respectively, whereas u,v,w  are the kinematic quantities
defined at the reference surface, the term w(y,z) refers to
the warping function for the variable cross-section, defined
by means of Vlasov torsion theory [1], and & is the twisting
angle. The equations of motion and end conditions for the free
vibration of AFG tapered I-beam resting on uniform Winkler
foundation are derived using Hamilton’s principle. In the
absence of external forces, the principle can be written as:

t2 t2
Mlde = [ 8(U, +U,+U, ~U,, )dt =0

2)
8I1=8U, +8U, +8U, —8U,, =0

where t, and t, are two arbitrary time variables, and TT is
the total potential energy. O denotes a virtual variation. U,
and U, are the elastic strain energy and the strain energy
due to effects of the initial stresses, U,, the kinetic energy
under harmonic forces, and U, is the energy corresponding
to a uniform elastic foundation. Their relationships for each
term of the total potential energy are developed separately in
the following:

5(]1 = .[oL JA (Gxx 5gix + Txy 6}/;’ + T” 57/;2 )dAdx

5U, =[] (o5, +7" &, +2 57 )ddd

xx

8Uy =0 [ [p(UBU + 50 + 8V )dddx )
LA

8U, = j(kvaévM +hw, ow, )

L

where L and A stand for the beam length and the cross-
sectional area, respectively, p and @ indicate the material
density and the natural frequency (circular). Moreover, (
0¢,,,07,.,07,, ) and (0¢..,07. ,5;/; ) refer to the variation of
the linear and non-linear part of the strain tensor, respectively;
whereas 0,,,7,,,7,, denote the Piola—Kirchhoff stress tensor

xx 0 xz
0 0 0 o el .
components, and 0,,,7,.,7,, are the initial axial and shear

stress conditions. In Eq. (3), ky and k, denote Winkler
foundation modulus for the lateral and transverse translations
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at the point M. Regarding Eq. (1), the two components of
vertical and lateral displacements at point M can be found as
follows:
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In this study, it is contemplated that the concentrated
compressive axial load (P) is applied at end beam without an
eccentricity from centroid along z-axis. Therefore, an external
bending moment occurs about the major principal axis ( M )
and the magnitude of bending moment with respect to z-axis
(M ) is equal to zero. Regarding this, the most general
case of normal and shear stresses associated with the external
bending moment M | and shear force V_ are considered as

o _P M, o VM, (5)

Based on the assumption of a Green’s strain-tensor, the
linear and non-linear parts of the kinematic relations are as
follows [2, 3]

8[ :u' _yv "—ZW I!_weﬂ

xx 0

" =2g" =~z 4+— |6

7, (z ayj (6)
1 2 2 2 2

e =—|v"+w " "+r0” |[+yw'0'-zv'0'
Al J+

y. =—(v'+0'z)0

Ve :(w’+6"y)6’

Based on the equation presented above, the first variation
of'the total potential energy contains the virtual displacements
( Su ,6v,6w,50) and their derivatives. After appropriate
integrations by parts, and mathematical simplifications, we
get the following governing equations of motion:

(EAu}) + par*du, =0
(EIv") —Pv"—(M v)' - pa’Av

+a? (plv') +k,v —k, h,0=0

(E1,w ) —Pw "+ (M .w)" - pa*Aw %
+o (pI,w ) +hkw +k h 0=0

(E1,0") —(GJO') —P(r’0"Y +M .w"

~M "= p’l,0(x )+ & (pl 4,9')'

~k by +k h20+k hw +k h'0=0
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Fig. 2. The effect of Winkler foundation modulus and power-
law index on critical buckling load

3. Results and Discussion

To solve the coupled equations of motion and, the DQM
is employed to calculate the natural frequency and critical
buckling load of AFG web and flanges tapered I-beam
resting on uniform Winkler foundation subjected to different
end conditions. In order to validate the acquired outcomes of
methodology presented herein, comparisons have been carried
out with those estimated via a finite element formulation by
Soltani et al. [3], and ones obtained by ANSY'S software [4].
In the case of simply-supported member, the non-dimensional
flexural-torsional buckling load parameter variation versus
the power-law exponent for different values of elastic
foundation constants where in numerical computations
a=a,=0.5 is selected and load is applied on the top flange of
right end section, is presented in Fig. 2.

Next, the influence of Winkler parameters (ranging from
0 to 90) on the variations of the non-dimensional natural

frequency ( @,, ) of simply supported thin-walled beam
with varying I-section made up of homogeneous material
and axially functionally one (n=1.5) with respect to tapering
ratios (varying from 0 to 1.0) is plotted in Fig. 3. In this stage,
the non-uniform beam having equal web height and flanges

width tapering ratios (a_a,) is perused.

4. Conclusions

The present research deals with the flexural-torsional
buckling and free vibrational analyses of AFG tapered
doubly-symmetric I-beam resting on elastic foundation.
Based on Vlasov’s theory for thin-walled cross-section, the
governing equations of motion are derived via the Hamilton
principle. The effect of axial load eccentricity is also
considered in the formulation. The differential quadrature
method is then used to estimate the buckling load and natural
frequency for web and flanges tapered beam. According to
the obtained numerical outcomes, it is concluded that that
for both uniform and non-uniform I-beams and all values of
Winkler foundation constants, as non-homogeneity parameter
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Fig. 3. Effect of tapering ratios on non-dimensional natural
frequency of simply supported beam for different values of
Winkler foundation modulus and gradient indexes

increases the stability strength and enhances. It can also be

stated that for 0.5<n <1.5 , the non-dimensional critical
load and vibrational frequency parameters increase obviously
whereas, for n>1.5, these parameters increase slightly and
approaches maximum magnitude. It is also found out that
for any value of power-law exponent and Winkler parameter,
the buckling load and natural frequency of prismatic beam
and double tapered one with is least and most, respectively.
The numerical outcomes show that the elastic foundation
increases the stability and vibrational characteristics of
axially non-homogeneous and homogeneous [-beams with
constant or variable cross-section.
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