کنترل میزان تزریق ویروس آنکولیتیک با در نظر گرفتن تاخیر زمانی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

ویروس‌درمانی آنکولیتیک یک استراتژی نوید دهنده جدید علیه سرطان است. ویروس‌های آنکولیتیک می‌توانند در سلول‌های سرطانی و نه در سلول‌های طبیعی تکثیر شوند، که منجر به لیز توده تومور و تحریک سیستم ایمنی می‌شود. حین ویروس‌درمانی، یک تاخیر زمانی از زمانی که سرایت ویروسی اولیه در سلول‌ تومور اتفاق افتاده تا زمانی که این سلول‌های آلوده به مرحله‌ای برسند که قادر به آلوده کردن سایر سلول‌های تومور باشند، وجود دارد. دانستن تاثیر این تاخیر بر ویروس‌درمانی سرطان مهم است. بدین منظور یک مدل ریاضی برای شناخت این تاخیر معرفی شده‌ است. برای تحلیل اثرات تاخیر در ویروس‌درمانی، مدل با افزودن دو کنترل ویروس‌درمانی و ایمن‌درمانی بازسازی شد. در نهایت، با استفاده از شبیه‌سازی عددی، برای نخستین بار طراحی و استفاده از یک کنترل‌کننده جبران‌ساز توزیع شده موازی فازی انجام شد. نتایج عددی نشان داد با اعمال کنترل مناسب، با گذشت زمان، کاهش جمعیت سلول‌های توموری به زیر ۱۰ درصد رخ می‌دهد. همچنین مشاهده می‌شود استفاده از معیار پایداری مستقل از تاخیر برای طراحی کنترل‌کننده جبران‌ساز توزیع شده موازی حساسیت پاسخ سیستم به افزایش تاخیر زمانی را تا حد قابل قبولی کاهش داده است. از آنجا که سیستم مورد مطالعه فقط در یکی از مراجع معرفی و تنها کنترل‌کننده بهینه بر آن اعمال شده است، مقایسه صورت گرفته، برتری و قدرت کنترل‌کننده طراحی شده را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Control of the Amount of Oncolytic Virus Injection by Considering Time Delay

نویسندگان [English]

  • Fatemeh Rahimi
  • Yousef Bazargan lari
Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
چکیده [English]

Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses can replicate in cancer cells rather than in normal cells, leading to lysis of the tumor mass and stimulate the immune system. During cancer viral therapy, there is a time delay from the initial virus infection of the tumor cells up to the time those infected cells reach the stage of being able to infect other cells. It is important to understand how the delay affects cancer viral therapy. For this purpose, a mathematical model is introduced to identify this delay. To analyze the effects of delay on virus therapy, the model was reconstructed by adding both virus therapy and immunotherapy control. Finally, using a numerical simulation, a fuzzy parallel distributed compensation controller was designed for the first time. Numerical results showed that with proper control, the tumor cell population decreased to below 10% over time. It is also observed that the use of a delay-independent stability criterion for the design of the parallel distributed compensation controller has reduced the sensitivity of the system response to increasing time delay to an acceptable level. Since the studied system is introduced only in one reference and only the optimal controller is applied, the comparison shows the superiority and power of the designed fuzzy parallel distributed compensation controller.

کلیدواژه‌ها [English]

  • Cancer
  • Viral therapy
  • Time delay
  • Control
  • Linear matrix inequality
[1] J.S. Butel, Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease, Carcinogenesis, 21(3) (2000) 405-426.
[2] A.H. Choi, M.P. O’Leary, Y. Fong, N.G. Chen, From benchtop to bedside: a review of oncolytic virotherapy, Biomedicines, 4(3) (2016) 18.
[3] W. Pan, V. Bodempudi, T. Esfandyari, F. Farassati, Utilizing ras signaling pathway to direct selective replication of herpes simplex virus-1, PLoS One, 4(8) (2009) e6514.
[4] Sivanandam, Venkatesh, Christopher J LaRocca, Nanhai G Chen, Yuman Fong, and Susanne G Warner. "Oncolytic Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. Molecular therapy oncolytics 13 (2019): 93.
 [5] Sivanandam, Venkatesh, Christopher J LaRocca, Nanhai G Chen, Yuman Fong, and Susanne G Warner. "Oncolytic Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. Molecular therapy oncolytics 13 (2019): 93.
[6] D. Dingli, M.D. Cascino, K. Josić, S.J. Russell, Ž. Bajzer, Mathematical modeling of cancer radiovirotherapy, Mathematical biosciences, 199(1) (2006) 55-78.
[7] D. Wodarz, Viruses as antitumor weapons: defining conditions for tumor remission, Cancer research, 61(8) (2001) 3501-3507.
[8] J. Li, K. Wang, Y. Yang, Dynamical behaviors of an HBV infection model with logistic hepatocyte growth, mathematical and computer modelling, 54(1-2) (2011) 704-711.
[9] Ž. Bajzer, T. Carr, K. Josić, S.J. Russell, D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses, Journal of theoretical Biology, 252(1) (2008) 109-122.
[10] B. Mukhopadhyay, R. Bhattacharyya, A nonlinear mathematical model of virus-tumor-immune system interaction: deterministic and stochastic analysis, Stochastic Analysis and Applications, 27(2) (2009) 409-429.
[11] J.E. Mittler, B. Sulzer, A.U. Neumann, A.S. Perelson, Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Mathematical biosciences, 152(2) (1998) 143-163.
[12] T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen, Y. Xu, An intracellular delay-differential equation model of the HIV infection and immune control, Mathematical Modelling of Natural Phenomena, 2(1) (2007) 84-112.
[13] S.A. Gourley, Y. Kuang, J.D. Nagy, Dynamics of a delay differential equation model of hepatitis B virus infection, Journal of Biological Dynamics, 2(2) (2008) 140-153.
[14] Y. Wang, J.P. Tian, J. Wei, Lytic cycle: a defining process in oncolytic virotherapy, Applied Mathematical Modelling, 37(8) (2013) 5962-5978.
[15] S. Wang, S. Wang, X. Song, Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control, Nonlinear Dynamics, 67(1) (2012) 629-640.
 [16]K.S. Kim, S. Kim, I.H. Jung, Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics, Mathematics and Computers in Simulation (2018).
[17]Wang, Zizi, Zhiming Guo, and Hal Smith. "A Mathematical Model of Oncolytic Virotherapy with Time Delay."  (2019).
[18]Nouni, Ayoub, Khalid Hattaf, and Noura Yousfi. "Dynamics of a Mathematical Model for Cancer Therapy with Oncolytic Viruses. Commun. Math. Biol. Neurosci. 2019 (2019): Article ID 12.
[19] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE transactions on systems, man, and cybernetics, (1) (1985) 116-132.
[20]X. Shi, X. Zhou, X. Song, Dynamical behavior of a delay virus dynamics model with CTL immune response, Nonlinear Analysis: Real World Applications, 11(3) (2010) 1795-1809.
 [21] A.R. Hall, B.R. Dix, S.J. O'Carroll, A.W. Braithwaite, p53-dependent cell death/apoptosis is required for a productive adenovirus infection, Nature medicine, 4(9) (1998) 1068.
[22] J.N. Harada, A.J. Berk, p53-Independent and-dependent requirements for E1B-55K in adenovirus type 5 replication, Journal of virology, 73(7) (1999) 5333-5344.
 [23]B.R. Dix, S.J. O’Carroll, C.J. Myers, S.J. Edwards, A.W. Braithwaite, Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53, Cancer research, 60(10) (2000) 2666-2672.
[24] K.S. Kim, S. Kim, I.H. Jung, Dynamics of tumor virotherapy: A deterministic and stochastic model approach, Stochastic Analysis and Applications, 34(3) (2016) 483-495.
 [25] K. Tanaka, H.O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach, John Wiley & Sons, 2004.
[26] T. Todo, R.L. Martuza, M.J. Dallman, S.D. Rabkin, In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity, Cancer research, 61(1) (2001) 153-161.