شبیه‌سازی عددی امواج هلمبو در جریان گرانشی نفوذی با استفاده از روش شبیه‌سازی گردابه‌های بزرگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه زنجان، زنجان، ایران

2 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه زنجان

چکیده

جریان‌های گرانشی، جریان‌هایی با اهمیت و نقش گسترده در مطالعات اتمسفری و اقیانوسی هستند. جریان چگال هنگامی ایجاد می‌شود که یک سیال با چگالی متفاوت درون سیالی دیگر به حرکت درآید. اگر سیال با چگالی معین وارد محیط لایه‌بندی‌شده، شود، به‌گونه‌ای که چگالی آن از لایه‌های زیرین کمتر و از لایه‌های بالایی بیشتر باشد جریان گرانشی از نوع نفوذی است. ناپایداری‌های کلوین-هلمهولتز و هلمبو در سطح تماس این جریان‌ها دیده می‌شود. پارامترهای تعیین‌کننده در نوع ناپایداری عدد ریچاردسون موضعی و نسبت ضخامت لایه برشی به لایه چگالی است. در این پژوهش شبیه‌سازی عددی دو‌بعدی ناپایداری هلمبو با دیدگاه اویلری-اویلری در جریان گرانشی نفوذی درون کانال، بررسی شده‌است. برای انجام این شبیه‌سازی از کد اپن‌فوم و با توجه به آشفته‌بودن جریان از روش شبیه‌سازی گردابه‌های بزرگ برای مدل‌سازی آشفتگی استفاده شده‌است. نتایج به‌دست‌آمده نشان می‌دهد، با افزایش چگالی جریان نفوذی مقدار عدد ریچاردسون کاهش و نسبت ضخامت لایه برشی به لایه چگالی افزایش می‌یابد. هم‌چنین با افزایش چگالی، مقدار فرکانس امواج هلمبو ابتدا افزایش، سپس کاهش می‌یابد. علاوه بر این، مقدار طول موج امواج هلمبو با افزایش چگالی جریان نفوذی زیاد می‌شود ولی در عدد موج امواج، رفتار عکس دیده می‌شود. سرعت فاز امواج هلمبو نیز، روند مشخصی با تغییرات چگالی ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of Holmboe waves in intrusive gravity current using LES method

نویسندگان [English]

  • Sadegh Rostami Dehjalali 1
  • Ehsan Khavasi 2
  • Parsa Nazmi 1
1 Department of Mechanical Engineering, University Of Zanjan, Zanjan, Iran
2 Mechanical engineering department, University of Zanjan
چکیده [English]

Gravitational currents are important currents in atmospheric and oceanic studies. Gravity current is caused when a fluid with different density moves into another fluid. If the fluid of a given density enters the stratified ambient, such that its density is lower than the underneath layers and higher than the upper layers, the gravity current is of the intrusive type. The Kelvin-Helmholtz and the Holmboe instabilities are seen in the interface. The decisive parameters in the type of instability are the Richardson number local and the ratio of shear layer thickness to the density layer. In this study, two-dimensional numerical simulation of Holmboe waves with the Eulerian-Eulerian approach on intrusive gravitational flow is investigated. OpenFOAM code was used to perform this simulation, and due to the turbulence of the flow, the LES method was used to model the turbulence. The obtained results show that with increasing the intrusive current density, the value of Richardson number decreases and the R parameter increases.Also, as the density increases, the frequency of the Holmboe waves first increases, then decreases. An increase in the wavelength of Holmboe waves is observed with increasing the intrusive current density. The phase velocity of Holmboe waves also does not have a specific trend with density changes.

کلیدواژه‌ها [English]

  • Intrusive gravity current
  • Richardson number
  • Shear layer thickness
  • Density layer thickness
  • Holmboe instability
[1] E.W. Tedford, R. Pieters, G. Lawrence, Symmetric Holmboe instabilities in a laboratory exchange flow, Journal of fluid mechanics, 636 (2009) 137-153.
[2] S. Ortiz, J.-M. Chomaz, T. Loiseleux, Spatial holmboe instability, Physics of Fluids, 14(8) (2002) 2585-2597.
[3] J. Carpenter, E. Tedford, M. Rahmani, G. Lawrence, Holmboe wave fields in simulation and experiment, Journal of fluid mechanics, 648 (2010) 205.
[4] J.Y. Holyer, H.E. Huppert, Gravity currents entering a two-layer fluid, Journal of Fluid Mechanics, 100(4) (1980) 739-767.
[5] R. Britter, J. Simpson, A note on the structure of the head of an intrusive gravity current, Journal of Fluid Mechanics, 112 (1981) 459-466.
[6] L.N. Howard, Note on a paper of John W. Miles, Journal of Fluid Mechanics, 10(4) (1961) 509-512.
[7] P. Hazel, Numerical studies of the stability of inviscid stratified shear flows, Journal of Fluid Mechanics, 51(1) (1972) 39-61.
[8] J. Holmboe, On the behavior of symmetric waves in stratified shear layers, Geofysiske Publikasjoner, 24 (1962) 67-113.
[9] D.Z. Zhu, G.A. Lawrence, Holmboe's instability in exchange flows, Journal of Fluid Mechanics, 429 (2001) 391-409.
[10] M.A. Khodkar, M. Nasr-Azadani, E. Meiburg, Intrusive gravity currents propagating into two-layer stratified ambients: Vorticity modeling, Physical Review Fluids, 1(4) (2016) 044302.
[11] B.R. Sutherland, P.J. Kyba, M.R. Flynn, Intrusive gravity currents in two-layer fluids, Journal of Fluid Mechanics, 514(1) (2004) 327-353.
[12] H. Cheong, J. Kuenen, P. Linden, The front speed of intrusive gravity currents, Journal of Fluid Mechanics, 552 (2006) 1.
[13] L.J. Marleau, M.R. Flynn, B.R. Sutherland, Gravity currents propagating up a slope in a two-layer fluid, Physics of Fluids, 27(3) (2015) 036601.
[14] J. Shin, S. Dalziel, P. Linden, Gravity currents produced by lock exchange, Journal of Fluid Mechanics, 521 (2004) 1.
[15] J. Zhou, S.K. Venayagamoorthy, Numerical simulations of intrusive gravity currents interacting with a bottom-mounted obstacle in a continuously stratified ambient, Environmental Fluid Mechanics, 17(2) (2017) 191-209.
[16] W. Smyth, J. Carpenter, G. Lawrence, Mixing in symmetric Holmboe waves, Journal of physical oceanography, 37(6) (2007) 1566-1583.
[17] A. Yang, E. Tedford, G. Lawrence, Nonsymmetric Holmboe instabilities in arrested salt-wedge flows,  (2018).
[18] E. Khavasi, B. Firoozabadi, Linear spatial stability analysis of particle-laden stratified shear layers, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(6) (2019) 246.
[19] E. Khavasi, B. Firoozabadi, Experimental study on the interfacial instability of particle-laden stratified shear flows, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4) (2018) 193.
[20] H. Salehipour, C.-c. Caulfield, W. Peltier, Turbulent mixing due to the Holmboe wave instability at high Reynolds number, Journal of Fluid Mechanics, 803 (2016) 591-621.
[21] T. Zagvozkin, A. Vorobev, T. Lyubimova, Kelvin-Helmholtz and Holmboe instabilities of a diffusive interface between miscible phases, Physical Review E, 100(2) (2019) 023103.
[22] J.P. Parker, C.-c.P. Caulfield, R.R. Kerswell, The viscous Holmboe instability for smooth shear and density profiles, Journal of Fluid Mechanics, 896 (2020).
[23] Z. He, L. Zhao, T. Lin, P. Hu, Y. lv, H.-C. Ho, Y.-T. Lin, Hydrodynamics of gravity currents down a ramp in linearly stratified environments, Journal of Hydraulic Engineering, 143(3) (2017) 04016085.
[24] M.E. Negretti, S.A. Socolofsky, G.H. Jirka, Linear stability analysis of inclined two-layer stratified flows, Physics of Fluids, 20(9) (2008) 094104.
[25] M. Mahdinia, B. Firoozabadi, M. Farshchi, A.G. Varnamkhasti, H. Afshin, Large eddy simulation of Lock-Exchange flow in a curved channel, Journal of Hydraulic Engineering, 138(1) (2012) 57-70.
[26] D.K. Lilly, A proposed modification of the Germano subgrid‐scale closure method, Physics of Fluids A: Fluid Dynamics, 4(3) (1992) 633-635.
[27] A. Koohandaz, E. Khavasi, A. Eyvazian, H. Yousefi, Prediction of particles deposition in a dilute quasi-steady gravity current by Lagrangian markers: effect of shear-induced lift force, Scientific Reports, 10(1) (2020) 1-17.
[28] S.K. Ooi, G. Constantinescu, L. Weber, Numerical simulations of lock-exchange compositional gravity current, Journal of Fluid Mechanics, 635 (2009) 361.
[29] F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, turbulence and Combustion, 62(3) (1999) 183-200.
[30] A. Peer, A. Gopaul, M. Dauhoo, M. Bhuruth, A new fourth-order non-oscillatory central scheme for hyperbolic conservation laws, Applied Numerical Mathematics, 58(5) (2008) 674-688.
[31] S. Haigh, G. Lawrence, Symmetric and nonsymmetric Holmboe instabilities in an inviscid flow, Physics of fluids, 11(6) (1999) 1459-1468.
[32] J. Pelmard, S. Norris, H. Friedrich, LES grid resolution requirements for the modelling of gravity currents, Computers & Fluids, 174 (2018) 256-270.
[33] A.M. Hogg, G. Ivey, The Kelvin-Helmholtz to Holmboe instability transition in stratified exchange flows, Journal of Fluid Mechanics, 477 (2003) 339-362.