کنترل ارتعاشات آنتن تیغه‌ای ماهواره مکعبی با استفاده از عملگر پیزوالکتریک با درنظرگرفتن محدودیت‌های سیستمی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی دانشگاه تهران

2 پژوهشگاه فضایی ایران، پژوهشکده سامانه های ماهوراه، تهران، ایران

چکیده

کنترل ارتعاشات آنتن ماهواره برای انتقال درست اطلاعات و هم‌چنین حذف اغتشاشات مکانیکی واردشده به ماهواره در حین کنترل وضعیت ضروری می‌باشد. در این مقاله به کنترل ارتعاشات آنتن تیغه‌ای ماهواره مکعبی با اعمال محدودیت‌های سیستمی پرداخته می‌شود. برای این منظور از سنسور و عملگر پیزوالکتریک استفاده شده و مدل ریاضی حاکم بر دینامیک آنتن استخراج می‌شود. برای استخراج معادلات از مدل تیر اویلر‌برنولی و روش جداسازی گلرکین استفاده می‌شود. پارامترهای میرایی و فرکانس طبیعی آنتن با تست ارتعاشات آزاد محاسبه می‌‎شود تا مدل دقیقی از سیستم به دست آید. با توجه به محدودیت‌های زیرسیستم توان الکتریکی ماهواره، امکان اعمال ولتاژ پیوسته به پیزوالکتریک وجود نداشته و فقط امکان تغییر ولتاژ باس اصلی ماهواره با استفاده از  برد سوئیچینگ  (افزاینده) و اعمال ولتاژهای مثبت و منفی صد ولت به پیزوالکتریک وجود دارد که پیچیدگی‌هایی را به مسئله کنترلی وارد می‌کند. در این مقاله سه الگوریتم کنترلی مختلف ارائه شده و پارامترهای آن‌ها بهینه شده‌اند. برای بهینه‌سازی پارامترها از روش بهینه‌سازی الگوریتم ژنتیک استفاده می‌شود. سه استراتژی کنترلی ارائه شده از نظر میزان مصرف انرژی و کیفیت کنترلی مقایسه شده و نتایج نشان می‌دهد روش کنترلی سوم از نظر مصرف انرژی بهینه بوده و زمان میراشدن ارتعاشات آنتن را به صورت قابل‌توجه کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

CubeSat antenna vibration control using piezoelectric bender considering system requirements

نویسندگان [English]

  • Ehsan Maani Miandoab 1
  • Ehsan Zabihian 2
1 Engineering Science, University of Tehran
2 Iranian Space Research Center
چکیده [English]

Vibration control of satellite antenna is the main concern to good quality data transmission and reduction of mechanical disturbance in attitude maneuvers. This paper is devoted to mathematical modeling and vibration control of cube-sat antenna. To do this aim, piezoelectric sensor and actuator are utilized and mathematical model of antenna by considering piezoelectric actuator as input parameter and antenna tip deflection as the output parameter. By performing experimental tests, system unknown parameters as damping ratio and natural frequency are obtained based on FFT analysis and the least square method. To control the antenna vibration, its mathematical model is obtained by considering piezoelectric voltage as an input and antenna tip deflection as an output. Herein, due to limitation on the power subsystem, it is not possible to apply continuous voltages and only 100V voltage is available which complicates the control task. Three different control algorithms are proposed for antenna control and compared together. The results show that the proposed control strategies are efficient and can reduce the control time from 10 to about 1 second. The appearing parameters in the selected control algorithm are optimized using genetic algorithm. The presented results in this paper are useful for the design and control of antenna and also for the accurate design of satellite control subsystem.

کلیدواژه‌ها [English]

  • Satellite antenna
  • Piezoelectric
  • Control algorithm
  • Genetic algorithm
[1] L.-L. Fu, A. Cazenave, Satellite altimetry and earth sciences: a handbook of techniques and applications, Elsevier, 2000.
[2] J. Zhao, Z. Cai, Nonlinear dynamics and simulation of multi-tethered satellite formations in Halo orbits, Acta Astronautica, 63(5-6) (2008) 673-681.
[3] T. Iida, Satellite communications: system and its design technology, IOS Press, 2000.
[4] Zeynab Aghajani , Ehsan Zabihian, M. Mirshams, GEO Communication Satellite Engineering Design Code Journal of space science and technology, 54 (2017).
[5] S. Gao, K. Clark, M. Unwin, J. Zackrisson, W. Shiroma, J. Akagi, K. Maynard, P. Garner, L. Boccia, G. Amendola, Antennas for modern small satellites, IEEE Antennas and Propagation Magazine, 51(4) (2009) 40-56.
[6] Ehsan Maani, Hossein Nejat Pishkenari, A.R. Kosari, Satellite 3Axis Attitude Control Using the Combination of Reaction Wheels and Thrusters Journal of space science and technology, 11 (2018).
[7] G.B. Maganti, S.N. Singh, Simplified adaptive control of an orbiting flexible spacecraft, Acta Astronautica, 61(7-8) (2007) 575-589.
[8] Y. Ding, X. Shi, S. Gao, H. Wu, R. Zhang, Analysis of tracking-pointing error and platform vibration effect in inter-satellite terahertz communication system, in:  2017 Chinese Automation Congress (CAC), IEEE, 2017, pp. 430-434.
[9] S. Wu, Y. Liu, G. Radice, S. Tan, Autonomous pointing control of a large satellite antenna subject to parametric uncertainty, Sensors, 17(3) (2017) 560.
[10] S.-B. Choi, Y.-M. Han, Piezoelectric actuators: control applications of smart materials, CRC Press, 2016.
[11] S.A. Bagherzadeh, M. Salehi, Experimental and numerical studies on energy harvesting from harmonic loads acting upon the wings of high aspect ratio MAVs, Modares Mechanical Engineering, 18(9) (2019) 1-7.
[12] N. Formica, L.B. Crema, C. Galeazzi, F. Morganti, Vibration control of satellite panels by means of piezoelectric elements, WIT Transactions on The Built Environment, 22 (1970).
[13] B.N. Agrawal, M.A. Elshafei, G. Song, Adaptive antenna shape control using piezoelectric actuators, Acta Astronautica, 40(11) (1997) 821-826.
[14] S. Kayastha, O. Tekinalp, K. Ozgoren, Quaternion based state dependent ricatti equation control of a satellite camera on piezoelectric actuators, in:  AIAA/AAS Astrodynamics Specialist Conference, 2010, pp. 8378.
[15] M. Elmadany, K. Alsaif, M. Foda, A. Albedah, Active Vibration Control of Satellite Panels using Piezoelectric Actuators and Sensors, in:  Proceedings of the 2nd International Conference on Systems, Control, Power, Robotics (SCOPORO'13), 2013, pp. 13-19.
[16] W.B. Li, X.R. Li, Z.G. Zhao, Y.Y. Wang, Y. Zhao, Optimal piezoelectric sensors and actuators deployment for active vibration suppression of satellite antenna reflector, in:  Advanced Materials Research, Trans Tech Publ, 2012, pp. 1490-1494.
[17] M. Azadi, E. Azadi, S.A. Fazelzadeh, Robust Inverse Dynamic Control of a Maneuvering Smart Flexible Satellite with Piezoelectric Layers, International Journal of Acoustics & Vibration, 22(4) (2017).
[18] M. Makhtoumi, Active Vibration Control of Launch Vehicle on Satellite Using Piezoelectric Stack Actuator, arXiv preprint arXiv:1903.07396,  (2018).
[19] C. Vasques, J.D. Rodrigues, Active vibration control of smart piezoelectric beams: comparison of classical and optimal feedback control strategies, Computers & structures, 84(22-23) (2006) 1402-1414.
[20] T. Sangpet, S. Kuntanapreeda, R. Schmidt, Adaptive Vibration Control of Piezoactuated Euler-Bernoulli Beams Using Infinite-Dimensional Lyapunov Method and High-Order Sliding-Mode Differentiation, Journal of Engineering, 2014 (2014).
[21] S. Aligholizadeh, M.A. Hamed, R. Hassannejad Qadim, Active vibration control of the clamped beam with length and location optimized piezoelectric patches Please refer to letter to editor, Modares Mechanical Engineering, 15(9) (2015) 11-22.
[22] K. Yildirim, I. Kucuk, Active piezoelectric vibration control for a Timoshenko beam, Journal of the Franklin Institute, 353(1) (2016) 95-107.
[23] M. Asghari, S.M. Rezaei, M. Zareinejad, Robust position control of piezoelectric actuator using self sensing actuation,  (2016).
[24] H. Biglari, M.N. Ansaroudi, S.R. Movahhed, Static Response of Smart Beams Equipped with Extension/Shearing Piezoelectric Patches Considering Poisson's E ect Based on Different Theories, Mechanical Engineering, 48(4) (2017).
[25] M.H. Azimi, A. Mazidi, M. Azadi, Active Flutter Control of a Swept Wing with an Engine by using Piezoelectric Actuators, Amirkabir Journal of Mechanical Engineering, 51(3) (2018).
[26] M. Naderi, A. Ariaei, Repair of Free Vibration Behavior of a Cracked Rotating Timoshenko Beam Using a Piezoelectric Patch and Applying Differential Transform Method, Amirkabir Journal of Mechanical Engineering, 51(1) (2019) 97-108.
[27] T. Malzer, H. Rams, M. Schöberl, Energy-Based In-Domain Control of a Piezo-Actuated Euler-Bernoulli Beam, IFAC-PapersOnLine, 52(2) (2019) 144-149.
[28] M. Paluszek, E. De Castro, D. Hyland, The CubeSat book, Plainsboro, New Jersey,  (2010) 3.
[29] N. Jalili, Piezoelectric-based vibration control: from macro to micro/nano scale systems, Springer Science & Business Media, 2009.
[30] N. Chattaraj, G. Ananthasuresh, R. Ganguli, Design of a distributed compliant mechanism using spring-lever model and topology optimization for piezoelectrically actuated flapping wings, Mechanics of Advanced Materials and Structures, 28(2) (2021) 118-126.
[31] S.S. Rao, Vibration of continuous systems, Wiley Online Library, 2007.
[32] E.M. Miandoab, A. Yousefi-Koma, H.N. Pishkenari, F. Tajaddodianfar, Study of nonlinear dynamics and chaos in MEMS/NEMS resonators, Communications in Nonlinear Science and Numerical Simulation, 22(1-3) (2015) 611-622.
[33] M. Asghari, S.M. Rezaei, A.H. Rezaie, M. Zareinejad, H. Ghafarirad, Self-sensing actuation using online capacitance measurement with application to active vibration control, Journal of Intelligent Material Systems and Structures, 26(2) (2015) 186-200.
[34] M. Yocum, H. Abramovich, Static behavior of piezoelectric actuated beams, Computers & structures, 80(23) (2002) 1797-1808.
[35] C.R. Houck, J. Joines, M.G. Kay, A genetic algorithm for function optimization: a Matlab implementation, Ncsu-ie tr, 95(09) (1995) 1-10.