مقایسه نتایج تجربی انتقال حرارت نانوسیالات آب/Al2O3 و آب/CuO در کانال مثلثی متساوی الاضلاع در شار حرارتی ثابت دیواره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار داوشکد م ىُدسی داوشگا فردیسی مش دُ ایران

2 کارشىاسی ارشد داوشکد م ىُدسی داوشگا فردیسی مش دُ ایران

3 استاد داوشکد م ىُدسی داوشگا فردیسی مش دُ ایران

چکیده

بررسی انتقال حرارت جابجایی در کانال های غیر دایره ای جهت استفاده در کاربردهای گرمایشی و سرمایشی بسیار مهم است. انتقال حرارت در این کانال ها پایین بوده ولی افت فشار کمتری نسبت به کانال های دایره ای دارند. در میان کانال های غیر دایره ای، کانال های مثلثی افت فشار کمتر و البته انتقال حرارت نامناسب تری را نشان می دهند. یکی از راه های بهبود انتقال حرارت این مقاطع افزودن نانو ذرات به سیال پایه آب است. در این مقاله انتقال حرارت مقطع مثلثی متساوی الاضلاع با افزودن نانو ذرات Al2O3 و CuO به سیال پایه آب مقطر به صورت تجربی بررسی شده است. مطابق داده های بدست آمده ضریب انتقال حرارت تجربی نانوسیالات مورد استفاده بیشتر از ضریب انتقال حرارت تجربی آب مقطر است.. جهت مقایسه انتقال حرارت نانوسیالات آب/Al2O3 وآب/CuO  در کانال مثلثی نمودارهای مربوط به عدد ناسلت و ضریب انتقال حرارت جابجایی رسم شده است که بیانگر افزایش این مقادیر با عدد پکلت و کسر حجمی نانو سیال است. در ضمن عدد ناسلت و ضریب انتقال حرارت جابجایی برای نانو سیال آب/CuO  مقادیر بیشتری را نسبت به نانو سیال آب/Al2O3 نشان می دهند

کلیدواژه‌ها


عنوان مقاله [English]

The Comparison between Al2O3/water and CuO/water nanofluids experimental heat transfer performance inside triangular duct

نویسندگان [English]

  • S. Zeinali Heris 1
  • Zahra Edalati 2
  • S.H. Noie 3
چکیده [English]

Experimentally and numerically investigation of triangular ducts heat transfer is very important for many heating and cooling systems  because of their very low pressure drop. But/ Nevertheless ,  this non-circular duct has very bad heat transfer performance. In the present study, the heat transfer performance of triangular ducts using nanofluid as heat transfer media is experimentally investigated. Nanofluid (which is the stable suspension of nanoparticles inside base fluid) is a new kind of heat transfer fluid and has very good potential for the heat transfer enhancement. Two kinds of nanofluid (Al2O3/water and CuO/water) produced and injected to the experimental set up, and the Nusselt number and heat transfer coefficients of these nanofluids are determined experimentally and compared with each other. The result expressed that Cuo/water presents better heat transfer performance compared to Al2O3/water nanofluid.

کلیدواژه‌ها [English]

  • Al2O3/Water Nanofluid
  • CuO/Water nanofluid
  • Triangular Duct
  • Heat transfer enhancement
[1] S.U. S. Choi, ―Enhancing thermal conductivity of fluid with nanoparticles‖, Developments and Applications of Non-Newtonian flows, D.A. Siginer and H.P.
Wang eds., FED, V. 231/MD,Vol. 66, pp. 99, 1995.
[2] W.M. Kays, A.L. London, ―Compact Heat Exchangers‖, third ed., McGraw-Hill, New York, 1984.
[3] S.S. Kutateladze, ―Fundamentals of Heat Transfer‖, Academic Press, New York, 1963.
[4] F.W. Schmidt, M.E. Newell, ―Heat transfer in fully developed laminar flow through rectangular and isosceles triangular ducts‖, Int. J. Heat Mass Transfer, vol. 10, pp.1121– 1123, 1967.
[5] H. Nakamura, S. Hiraoka, I. Yamada, ―Laminar forced convection flow and heat transfer in arbitrary triangular ducts‖, Heat Transfer—Japanese Research, vol. 1, pp. 120– 122, 1972.
[6] S.H. Clark, W.M. Kays, ―Laminar flow forced convection in rectangular tubes‖, Trans. ASME, vol. 75, pp. 859- 866, 1953.
[7] R. K. Shah, ―Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry‖, Heat Mass Transfer, Vol. 18, pp. 849- 862, 1975.
[8] Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of
Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan), vol. 4, pp. 227– 33, 1993.
[9] Grimm A., ―Powdered aluminum-containing heat transfer fluids‖, German Patent DE 4131516 A1 (1993).
[10] S.U.S., Choi, J.A., Eastman, U.S. Patent 6, 221, 275 (April 2001).
[11] Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ., ―Anomalously increased
effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles‖, Applied Physics Letters, vol. 78, pp. 718– 20, 2001.
[12] Philip J, Laskar JM, Raj B., ―Magnetic field induced extinction of light in a suspension of Fe3O4 nanoparticles‖, Applied Physics Letters, vol. 92, 2008.
علی[ اطیر حمیدی، آزادٌ امرایل یُ، علیمراد رشیدی، عثدایر امقدسی، سیدمسع دً حسیىی، ‖ تررسی مدی اُی ریا ی ارا،ٍشدٌ ترای محاسث ریة رساوش گرمایی واو سًیاا ― ، مال م ىُدسی شیمی ایران، سال شَت ، شمار ی لُ .
[14] Pak BC, Cho IY., ―Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles‖, Experimental Heat Transfer, vol. 11, pp. 151– 70, 1998.
[15] Wen D, Ding Y., ―Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions‖, International Journal of Heat and Mass Transfer, vol. 47, pp. 5181– 5188, 2004.
[16] Zeinali Heris Z, Etemad SGh, Nasr Esfahany M., ―Experimental investigation of oxide
nanofluids laminar flow convective heat transfer‖, International Communication in Heat and Mass Transfer, vol. 33(4), pp. 529–35, 2006.
[17] A. Akbarinia , R. Laur, ―Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach‖, International Journal of Heat and Fluid Flow, vol. 30 pp. 706– 714, 2009.
18 [ سعید زیىایی رَیب، ‖ممایع اثر واو سیال در ت ثُ دًعملکرد سیست اَی یسای وقلیٍ ― ، مال م ىُدسی شیمی ایران، سال دَت ، شمار سی ی دَت ، 1387 .
[19] سعید زیىایی رَیب ی کمال محمدی فرد،  ‖ تررسی پتاوسی واو سًیال تٍ عى اًن سیال عام تىک کىىدٌ در ویریگاٌ اَی سَتٍ ای ― ، مال م ىُدسی مکاویک / شمارٌ 67 / سال
. اَد ، 1388
[20] سعید [ زیىایی رَیب، امیر شییی، ‖ تررسی واو سًیاا ا تىک سازی راشٍ اَی رایاوٍ ای ― ، مال م ىُدسی مکاویک / شمار 66ٌ / سال . اَد ، 138
[21] Taofik H. Nassan, S. Zeinali Heris, and S.H. Noie, ―A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluid in square cross-section duct‖, International Communications in Heat and Mass Transfer, vol. 37, issue 7, pp. 924- 928, 2010.
[22] S.H. Noie, S. Zeinali Heris, M. Kahani, S.M. Nowee, ―Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon‖, International Journal of Heat and Fluid Flow, vol. 30 , pp. 700– 705, 2009.
[23] Eiyad Abu-Nada, ―Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection‖, International Journal of Heat and Fluid Flow, vol. 30 679– 690, 2009.
[24] Jie Li, Clement Kleinstreuer, ―Thermal performance of nanofluid flow in microchannels‖, International Journal of Heat and Fluid Flow, vol. 29, pp. 1221– 1232 , 2008.
[25] S.M. Fotukian, M.Nasr Esfahany, ―Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube‖, International communications in heat and mass transfer, vol 37, pp. 214- 219, 2010.
[26] M. Jahanshahi, S.F. Hosseinizadeh, M. Alipanah, A. Dehghani, G.R. Vakilinejad, ―Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid‖, International communications in heat and mass transfer, vol 37, pp. 687- 694, 2010.
[27]  S. Soltani, S.GH. Etemad, J. Thibault, ―Pool boiling heat transfer of non-Newtonian nanofluid‖, International communications in heat and mass transfer, vol 37, pp. 29- 33, 2010.
[28] Lazarus Godson, B. Raja, D. Mohan Lal, S. Wongwises., ―Enhancement of heat transfer using nanofluids—An overview‖, Renewable and Sustainable Energy Reviews, vol. 14, pp. 629– 641, 2010.
[29] S. Zeinali Heris, Esfahany MN, Etemad SGh., ―Experimental investigation of convective
heat transfer of Al2O3/water nanofluid in circular tube‖, International Journal of Heat and Fluid Flow, Vol. 28, No. 2, pp. 203– 210, 2007.
[30] Williams W, Buongiorno J, Hu L-W., ―Experimental investigation of turbulent
convective heat transfer and pressure loss of alumina/water and zirconia/ water nanoparticle colloids (nanofluids) in horizontal tubes‖, ASME Journal of Heat Transfer, vol. 130, pp. 1– 6, 2008.
[31] He, Y., Y. Men, Y. Zhao, H. Lu, Y. Ding, ―Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions‖, Applied Thermal, vol. 29, No. 10, pp. 1965– 1972 , 2009.
[32] Yu, W., France, M. D., Smith, S. D., Singh, D., Timofeeva, V. E., Routbort, L. J., ―Heat transfer to a silicon carbide/water nanofluid‖, Journal of Heat and Mass Transfer, vol. 52, pp. 3606- 3612, 2009.
[33] Kim SJ, Bang IC, Buongiorno J, Hu LW, ―Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux‖, International Journal of Heat and Mass Transfer, vol. 50, pp. 4105– 4116, 2007.
[34] Azodi, M. Abadi, M.M., Rashidi, F. Investigation on enhancement of forced convective heat transfer coefficient of MWCNT/water nanofluid in double-pipe heat-exchanger, 6th International Congress on Chemical Engineering, 1388
[35] Mokmeli, A., Saffar-Avval, M. Behzadmehr, A. Numerical Modeling of Nanofluid Heat Transfer,15th Annual International Conference on Mechanical Engineering, Amirkabir University of Technology, Iran, May 2007.
[36] Behzadmehr,A. Saffar‐Avval, M. Galanis, N., ‖Prediction of Turbulent Forced of a nanofluid in a tube with uniform heat flux using a two phase flow approach‖, International Journal of Heat and Fluid Flow, vol. 28, pp. 211‐ 219, 2007.
[37] Kalteh, M., Abbassi, A., Saffar-Avval, M., Harting, J., ―Nanoparticle size effect on the convective heat transfer of a nanofluid flow inside a microchannel‖, XXVIII Congresso UIT sulla Trasmissione del Calore Brescia, pp. 21- 23, Giugno 2010.
[38] Seider, E. N. and Tater G. E., ―Heat transfer and pressure drop of liquid in tubes‖, Ind.
Eng. Chem., Vol. 28, pp. 1429- 1435, 1936.
[39] Mosavian, H.T., Zeinali Heris, S. Etemad, S.Gh., Nasr Esfahany, M., ―Heat transfer enhancement by application of nano-powder‖, Journal of Nanoparticle Research, Vol.12, pp.2611- 2619, 2010.
[40] Yu, W. and Choi, S.U.S., ―The role of interfacial layers in the enhanced thermal
conductivity of nanofluids: A renovated Maxwell model‖, J. Nanoparticle Research, Vol. 5, pp. 167- 171, 2003.