اثر نانو ذرات گرافن بر مقاومت ساختار پانل ساندویچی الهام گرفته شده از ریزساختار رگه بال سنجاقک تحت بارگذاری شبه استاتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران، ایران

چکیده

بال‌های سنجاقک یک ریز ساختار ترکیبی جذاب و ارگان‌های پروازی بسیار تخصصی هستند که سازگاری خوبی برای رفتار پرواز سنجاقک دارند. هدف از این مقاله، بررسی اثر نانو ذرات گرافن بر مقاومت یک ساختار ساندویچی الهام گرفته شده از پیکربندی ریزساختار بال سنجاقک تحت بارگذاری شبه استاتیک است. ساختارهای رگه‌ای ساندویچی از لایه‌های شیشه / اپوکسی با درصد‌های مختلف نانو ذرات گرافن ساخته شده‌اند. در هسته مرکزی رگه، از فوم پلی‌اورتان استفاده شد. بعد از تست شبه استاتیک، ویژگی‌های قابلیت ضربه‌پذیری در این ساختارها مورد بحث قرار گرفت. از طرفی، تأثیر فوم پلی‌اورتان در میزان آسیب ساختار ساندویچی در اثر نیروی شبه استاتیکی مورد بررسی قرار گرفت. جهت بررسی آسیب در نمونه‌های ساخته شده، تصاویر سطح آسیب و نمای برش خورده آسیب گرفته شد و نتایج آن گزارش شد. در آخر، از آنالیز میکروسکوپ الکترونی روبشی برای ارزیابی توزیع نانو ذرات گرافن در نمونه‌ها استفاده شد. نتایج نشان دادند که وجود نانو ذرات گرافن در رزین این نوع از ساختار ساندویچی با هسته فوم، اگر از یک مقدار کمتر باشد تأثیر چندانی در مقاومت ساختار نخواهد گذاشت. از طرفی، اگر نانو ذرات گرافن از یک مقداری بیشتر شود مقاومت نسبتاً خوبی را از خود نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Graphene Nanoparticles on the Strength of the Sandwich Panel Structure Inspired by the Dragonfly Wing Vein Microstructure under Quasi-Static Loading

نویسندگان [English]

  • Mahdi Rezvani Tavakol
  • Mahdi Yarmohammad Tooski
  • Mohsen Jabbari
  • Merdad Javadi
Department of Mechanical Engineering, Faculty of Engineering, Islamic Azad University South Tehran Branch, Iran
چکیده [English]

Dragonfly wings are a fascinating composite microstructure and highly specialized flight organs well adapted for dragonfly flight behavior. This paper aims to investigate the effect of graphene nanoparticles on the strength of a sandwich structure inspired by the microstructure configuration of a dragonfly wing under quasi-static loading. Sandwich vein structures are made of glass/epoxy layers with different percentages of graphene nanoparticles. Polyurethane foam was used in the central core of the vein. After the quasi-static test, the crashworthiness characteristics of these structures were discussed. On the other hand, the effect of polyurethane foam on the amount of damage to the sandwich structure due to quasi-static force was investigated. Pictures of the damaged surface and the cut view of the damage were taken to check the damage in the manufactured samples, and the results were reported. Finally, Field Emission Scanning Electron Microscopes analysis was used to evaluate the distribution of graphene nanoparticles in the samples. The results showed that the presence of graphene nanoparticles in the resin of this type of sandwich structure with a foam core if it is less than one value, will not have much effect on the strength of the structure. On the other hand, if the graphene nanoparticles exceed a certain amount, it shows relatively good resistance.

کلیدواژه‌ها [English]

  • Composite structure
  • Quasi-static loading
  • Crashworthiness
  • Energy absorption
  • Polyurethane foam core
[1] J. Sun, B. Bhushan, The structure and mechanical properties of dragonfly wings and their role on flyability, Comptes Rendus Mécanique, 340(1-2) (2012) 3-17.
[2] Y. Chen, X. Wang, H. Ren, X. Li, An organic junction between the vein and membrane of the dragonfly wing, Chinese Science Bulletin, 56(16) (2011) 1658-1660.
[3] X.-S. Wang, Y. Li, Y.-F. Shi, Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein, Composites Science and Technology, 68(1) (2008) 186-192.
[4] Y. Chen, X. Wang, H. Ren, H. Yin, S. Jia, Hierarchical dragonfly wing: Microstructure-biomechanical behavior relations, Journal of Bionic Engineering, 9(2) (2012) 185-191.
[5] T. Sadowski, J. Bęc, Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling–Static and dynamic response, Computational Materials Science, 50(4) (2011) 1269-1275.
[6] H. Molatefi, H. Mozafari, Investigation on in-plane behavior of bare and foam-filled honeycombs in quasi-static and dynamic states by using numerical method, Modares Mechanical Engineering, 14(15) (2015) 177-185.
[7] V. Deshpande, N. Fleck, Multi-axial yield behaviour of polymer foams, Acta materialia, 49(10) (2001) 1859-1866.
[8] O.A. Mocian, D.M. Constantinescu, M. Sandu, D. Rosu, M. Feuchter, Impact response of sandwich panels with polyurethane and polystyrene core and composite facesheets, Materials Today: Proceedings, 12 (2019) 192-199.
[9] A. McCracken, P. Sadeghian, Partial-composite behavior of sandwich beams composed of fiberglass facesheets and woven fabric core, Thin-walled structures, 131 (2018) 805-815.
[10] S. Zangana, J. Epaarachchi, W. Ferdous, J. Leng, A novel hybridised composite sandwich core with Glass, Kevlar and Zylon fibres–Investigation under low-velocity impact, International Journal of Impact Engineering, 137 (2020) 103430.
[11] Y. Zhu, Y. Sun, Low-velocity impact response of multilayer foam core sandwich panels with composite face sheets, International Journal of Mechanical Sciences, 209 (2021) 106704.
[12] J. Gustin, A. Joneson, M. Mahinfalah, J. Stone, Low velocity impact of combination Kevlar/carbon fiber sandwich composites, Composite structures, 69(4) (2005) 396-406.
[13] A. Wada, T. Kawasaki, Y. Minoda, A. Kataoka, S. Tashiro, H. Fukuda, A method to measure shearing modulus of the foamed core for sandwich plates, Composite Structures, 60(4) (2003) 385-390.
[14] D. Horrigan, R. Aitken, G. Moltschaniwskyj, Modelling of crushing due to impact in honeycomb sandwiches, Journal of Sandwich Structures & Materials, 2(2) (2000) 131-151.
[15] S. Zhu, G.B. Chai, Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact, Composite structures, 101 (2013) 204-214.
[16] V. Dikshit, A.P. Nagalingam, G.D. Goh, S. Agarwala, W.Y. Yeong, J. Wei, Quasi-static indentation analysis on three-dimensional printed continuous-fiber sandwich composites, Journal of Sandwich Structures & Materials, 23(2) (2021) 385-404.
[17] F. Zhang, R. Mohmmed, B. Sun, B. Gu, Damage behaviors of foam sandwiched composite materials under quasi-static three-point bending, Applied Composite Materials, 20(6) (2013) 1231-1246.
[18] W. Zhang, Q. Qin, J. Li, K. Li, L. Poh, Y. Li, J. Zhang, S. Xie, H. Chen, J. Zhao, Deformation and failure of hybrid composite sandwich beams with a metal foam core under quasi-static load and low-velocity impact, Composite Structures, 242 (2020) 112175.
[19] H. Amirbeygi, H. Khosravi, E. Tohidlou, Reinforcing effects of aminosilane‐functionalized graphene on the tribological and mechanical behaviors of epoxy nanocomposites, Journal of Applied Polymer Science, 136(18) (2019) 47410.
[20] M. Rezvani Tavakol, M. Yarmohammad Tooski, M. Jabbari, M. Javadi, Effect of graphene nanoparticles on the strength of sandwich structure inspired by dragonfly wings under low‐velocity impact, Polymer Composites, 42(10) (2021) 5249-5264.
[21] A. Safamanesh, S.M. Mousavi, H. Khosravi, E. Tohidlou, On the low‐velocity and high‐velocity impact behaviors of aramid fiber/epoxy composites containing modified‐graphene oxide, Polymer Composites, 42(2) (2021) 608-617.
[22] E. Kazemi‐Khasragh, F. Bahari‐Sambran, S.M.H. Siadati, R. Eslami‐Farsani, S. Arbab Chirani, The effects of surface‐modified graphene nanoplatelets on the sliding wear properties of basalt fibers‐reinforced epoxy composites, Journal of Applied Polymer Science, 136(39) (2019) 47986.
[23] B. Zhang, R. Asmatulu, S.A. Soltani, L.N. Le, S.S. Kumar, Mechanical and thermal properties of hierarchical composites enhanced by pristine graphene and graphene oxide nanoinclusions, Journal of Applied Polymer Science, 131(19) (2014).
[24] B. Hülagü, H.Y. Ünal, V. Acar, T. Khan, M.R. Aydın, O.A. Aydın, S. Gök, Y. Pekbey, H. Akbulut, Low-velocity impact and bending response of graphene nanoparticle-reinforced adhesively bonded double strap joints, Journal of Adhesion Science and Technology, 35(22) (2021) 2391-2409.
[25] D. Ruan, G. Lu, Y.C. Wong, Quasi-static indentation tests on aluminium foam sandwich panels, Composite Structures, 92(9) (2010) 2039-2046.
[26] S. Cheng, X. Zhao, Y. Xin, S. Du, H. Li, Quasi-static localized indentation tests on integrated sandwich panel of aluminum foam and epoxy resin, Composite Structures, 129 (2015) 157-164.
[27] R. Vignjevic, J. Campbell, K. Hughes, M. Orłowski, S. Garcea, P. Withers, J. Reed, Soft body impact resistance of composite foam core sandwich panels with unidirectional corrugated and tubular reinforcements, International Journal of Impact Engineering, 132 (2019) 103320.
[28] K. Choupani Chaydarreh, A. Shalbafan, J. Welling, Effect of ingredient ratios of rigid polyurethane foam on foam core panels properties, Journal of Applied Polymer Science, 134(17) (2017).
[29] H. Wang, T.-T. Li, L. Wu, C.-W. Lou, J.-H. Lin, Spacer fabric/flexible polyurethane foam composite sandwiches: Structural design and quasi-static compressive, bursting and dynamic impact performances, Journal of Sandwich Structures & Materials, 23(4) (2021) 1366-1382.
[30] T. Khan, V. Acar, M.R. Aydin, B. Hülagü, H. Akbulut, M.Ö. Seydibeyoğlu, A review on recent advances in sandwich structures based on polyurethane foam cores, Polymer Composites, 41(6) (2020) 2355-2400.
[31] X. Zeng, T. Tang, J. An, X. Liu, H. Xiang, Y. Li, C. Yang, T. Xia, Integrated preparation and properties of polyurethane‐based sandwich structure composites with foamed core layer, Polymer Composites, 42(9) (2021) 4549-4559.
[32] F. Zhao, L. Wu, Z. Lu, J.-H. Lin, Q. Jiang, Design of shear thickening fluid/polyurethane foam skeleton sandwich composite based on non-Newtonian fluid solid interaction under low-velocity impact, Materials & Design, 213 (2022) 110375.
[33] D. Zangani, M. Robinson, A. Gibson, Progressive failure of composite hollow sections with foam-filled corrugated sandwich walls, Applied Composite Materials, 14(5) (2007) 325-342.
[34] H. Rajabi, M. Moghadami, A. Darvizeh, Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing, Journal of Bionic Engineering, 8(2) (2011) 165-173.
[35] E. Appel, L. Heepe, C.P. Lin, S.N. Gorb, Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin, Journal of Anatomy, 227(4) (2015) 561-582.
[36] A.C.D.-o.C. Materials, Standard test method for tensile properties of polymer matrix composite materials, ASTM international, 2008.
[37] G. Zhu, G. Sun, G. Li, A. Cheng, Q. Li, Modeling for CFRP structures subjected to quasi-static crushing, Composite Structures, 184 (2018) 41-55.
[38] Ö. Özbek, Ö.Y. Bozkurt, A. Erkliğ, An experimental study on intraply fiber hybridization of filament wound composite pipes subjected to quasi-static compression loading, Polymer Testing, 79 (2019) 106082.
[39] S. Mohsenizadeh, R. Alipour, M. Shokri Rad, A. Farokhi Nejad, Z. Ahmad, Crashworthiness assessment of auxetic foam-filled tube under quasi-static axial loading, Materials & Design, 88 (2015) 258-268.
[40] F. Wu, X. Xiao, J. Yang, X. Gao, Quasi-static axial crushing behaviour and energy absorption of novel metal rope crochet-sintered mesh tubes, Thin-Walled Structures, 127 (2018) 120-134.
[41] Q. Liu, H. Xing, Y. Ju, Z. Ou, Q. Li, Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes, Composite Structures, 117 (2014) 1-11.
[42] F. Tarlochan, S. Ramesh, Composite sandwich structures with nested inserts for energy absorption application, Composite Structures, 94(3) (2012) 904-916.
[43] D.Y. Hu, M. Luo, J.L. Yang, Experimental study on crushing characteristics of brittle fibre/epoxy hybrid composite tubes, International Journal of Crashworthiness, 15(4) (2010) 401-412.
[44] L.N.S. Chiu, B.G. Falzon, D. Ruan, S. Xu, R.S. Thomson, B. Chen, W. Yan, Crush responses of composite cylinder under quasi-static and dynamic loading, Composite Structures, 131 (2015) 90-98.
[45] J.-S. Kim, H.-J. Yoon, K.-B. Shin, A study on crushing behaviors of composite circular tubes with different reinforcing fibers, International Journal of Impact Engineering, 38(4) (2011) 198-207.
[46] J. Xu, Y. Ma, Q. Zhang, T. Sugahara, Y. Yang, H. Hamada, Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding, Composite Structures, 139 (2016) 130-140.
[47] A. Othman, S. Abdullah, A. Ariffin, N. Mohamed, Investigating the quasi-static axial crushing behavior of polymeric foam-filled composite pultrusion square tubes, Materials & Design, 63 (2014) 446-459.
[48] A. Ahmed, Z. Bingjie, M.H. Ikbal, W. Qingtao, A. Obed, L. Wei, Experimental study on the effects of stacking sequence on low velocity impact and quasi-static response of foam sandwich composite structures, Advances in Structural Engineering, 18(11) (2015) 1789-1805.
[49] H. Ulus, T. Üstün, Ö.S. Şahin, S.E. Karabulut, V. Eskizeybek, A. Avcı, Low-velocity impact behavior of carbon fiber/epoxy multiscale hybrid nanocomposites reinforced with multiwalled carbon nanotubes and boron nitride nanoplates, Journal of composite materials, 50(6) (2016) 761-770.