[1] H. Shahbazi, K. Jamshidi, A.H. Monadjemi, H. Eslami, Biologically inspired layered learning in humanoid robots, Knowledge-Based Systems, 57 (2014) 8-27.
[2] L. Rozo, Robot learning from demonstration of force-based manipulation tasks, (2013).
[3] S. Schaal, Is imitation learning the route to humanoid robots?, Trends in cognitive sciences, 3(6) (1999) 233-242.
[4] O.C. Jenkins, M.J. Mataric, S. Weber, Primitive-based movement classification for humanoid imitation, in: Proceedings of the 1st IEEE-RAS International Conference on Humanoid Robotics, 2000.
[5] H. Asada, H. Izumi, Automatic program generation from teaching data for the hybrid control of robots, IEEE Transactions on Robotics and Automation, 5(2) (1989) 166-173.
[6] C.G. Atkeson, S. Schaal, Learning tasks from a single demonstration, in: Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on, IEEE, 1997, pp. 1706-1712.
[7] D. Perrett, P. Smith, A. Mistlin, A. Chitty, A. Head, D. Potter, R. Broennimann, A. Milner, M. Jeeves, Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report, Behavioural brain research, 16(2) (1985) 153-170.
[8] N. Das, R. Prakash, L. Behera, Learning object manipulation from demonstration through vision for the 7-DOF barrett WAM, in: 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), IEEE, 2016, pp. 391-396.
[9] A. Zaraki, M. Giuliani, M.B. Dehkordi, D. Mazzei, A. D'ursi, D. De Rossi, An rgb-d based social behavior interpretation system for a humanoid social robot, in: Robotics and Mechatronics (ICRoM), 2014 Second RSI/ISM International Conference on, IEEE, 2014, pp. 185-190.
[10] B.D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning from demonstration, Robotics and autonomous systems, 57(5) (2009) 469-483.
[11] T.I.M.I.H. INOUE, M. Inamura, H. Inaba, Acquisition of probabilistic behavior decision model based on the interactive teaching method, in: Proceedings of the Ninth International Conference on Advanced Robotics, ICAR99, 1999.
[12] W.D. Smart, Making reinforcement learning work on real robots, Brown University, 2002.
[13] J.A. Clouse, On integrating apprentice learning and reinforcement learning, (1996).
[14] R.P. Rao, A.P. Shon, A.N. Meltzoff, A Bayesian model of imitation in infants and robots, Imitation and social learning in robots, humans, and animals, (2004) 217-247.
[15] T. Asfour, P. Azad, F. Gyarfas, R. Dillmann, Imitation learning of dual-arm manipulation tasks in humanoid robots, International Journal of Humanoid Robotics, 5(02) (2008) 183-202.
[16] D. Herzog, A. Ude, V. KrUger, Motion imitation and recognition using parametric hidden markov models, in: Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots, IEEE, 2008, pp. 339-346.
[17] V. KR, D.L.H. UGER, S. Baby, Primitive-Based Modeling and Grammar, IEEE robotics & automation magazine, (2010) 31.
[18] A.J. Ijspeert, J. Nakanishi, S. Schaal, Movement imitation with nonlinear dynamical systems in humanoid robots, in: Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, IEEE, 2002, pp. 1398-1403.
[19] S. Schaal, J. Peters, J. Nakanishi, A. Ijspeert, Learning movement primitives, in: Robotics Research. The Eleventh International Symposium, Springer, 2005, pp. 561-572.
[20] H. Shahbazi, K. Jamshidi, A.H. Monadjemi, Sensor-based programming of central pattern generators in humanoid robots, International Journal of Advanced Robotic Systems, 10 (2013).
[21] L. Righetti, A.J. Ijspeert, Programmable central pattern generators: an application to biped locomotion control, in: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., IEEE, 2006, pp. 1585-1590.
[22] S. Degallier, L. Righetti, S. Gay, A. Ijspeert, Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives, Autonomous Robots, 31(2-3) (2011) 155-181.
[23] S. Gay, J. Santos-Victor, A. Ijspeert, Learning robot gait stability using neural networks as sensory feedback function for central pattern generators, in: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, Ieee, 2013, pp. 194-201.
[24] J. Nicolas, Artificial evolution of controllers based on non-linear oscillators for bipedal locomotion, Master's thesis, EPFL, winter, 2006 (2005).
[25] T. Wei, Y. Qiao, B. Lee, Kinect skeleton coordinate calibration for remote physical training, in: Proceedings of the International Conference on Advances in Multimedia (MMEDIA), 2014, pp. 23-27.
[26] Y. Ou, J. Hu, Z. Wang, Y. Fu, X. Wu, X. Li, A real-time human imitation system using kinect, International Journal of Social Robotics, 7(5) (2015) 587-600.
[27] H. Ma, H. Wang, M. Fu, C. Yang, One new human-robot cooperation method based on kinect sensor and visual-servoing, in: International Conference on Intelligent Robotics and Applications, Springer, 2015, pp. 523-534.
[28] R. PARANDEH, H. SHAHBAZI, K. JAMSHIDI, J.B. KHODABANDEH, Design of a Trainable Controller Inspired from Neural System to Generate Complex Behaviors in Humanoid Robots, (2016).
[29] M.A. Arshi, Imitation learning of playing songs in humanoid robot simulator, University of Isfahan, Isfahan, 2014.