[1] S. Chen, G.D. Doolen, LATTICE BOLTZMANN METHOD FOR FLUID FLOWS, Annual Review of Fluid Mechanics, 30(1) (1998) 329-364.
[2] D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences, 39(5) (2003) 329-367.
[3] Z.-G. Feng, E.E. Michaelides, The immersed boundarylattice Boltzmann method for solving fluid–particles interaction problems, Journal of Computational Physics, 195(2) (2004) 602-628.
[4] M.-C. Lai, C.S. Peskin, An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, 160(2) (2000) 705-719.
[5] Z.-G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, Journal of Computational Physics, 202(1) (2005) 20-51.
[6] X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Physics Letters A, 354(3) (2006) 173-182.
[7] A. Dupuis, P. Chatelain, P. Koumoutsakos, An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder, Journal of Computational Physics, 227(9) (2008) 4486-4498.
[8] S.K. Kang, Y.A. Hassan, A comparative study of directforcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries, International Journal for Numerical Methods in Fluids, 66(9) (2011) 1132- 1158.
[9] J. Wu, C. Shu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, Journal of Computational Physics, 228(6) (2009) 1963-1979.
[10] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, 65(4) (2002) 046308.
[11] S.-W. Su, M.-C. Lai, C.-A. Lin, An immersed boundary technique for simulating complex flows with rigid boundary, Computers & Fluids, 36(2) (2007) 313-324.
[12] D.V. Le, B.C. Khoo, K.M. Lim, An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Computer Methods in Applied Mechanics and Engineering, 197(25) (2008) 2119-2130.
[13] A.M. Ardekani, S. Dabiri, R.H. Rangel, Collision of multi-particle and general shape objects in a viscous fluid, Journal of Computational Physics, 227(24) (2008) 10094-10107.
[14] R.H. Davis, Effects of surface roughness on a sphere sedimenting through a dilute suspension of neutrally buoyant spheres, Physics of Fluids A: Fluid Dynamics, 4(12) (1992) 2607-2619.
[15] M.L. Ekiel-Jeżewska, F. Feuillebois, N. Lecoq, K. Masmoudi, R. Anthore, F. Bostel, E. Wajnryb, Hydrodynamic interactions between two spheres at contact, Physical Review E, 59(3) (1999) 3182-3191.
[16] M.L. Ekiel-Jeżewska, N. Lecoq, R. Anthore, F. Bostel, F. Feuillebois, Rotation due to hydrodynamic interactions between two spheres in contact, Physical Review E, 66(5) (2002) 051504.
[17] J. Zhang, L.-S. Fan, C. Zhu, R. Pfeffer, D. Qi, Dynamic behavior of collision of elastic spheres in viscous fluids, Powder Technology, 106(1) (1999) 98-109.
[18] L. Jian-Zhong, W. Ye-Long, J.A. Olsen, Sedimentation of Rigid Cylindrical Particles with Mechanical Contacts, Chinese Physics Letters, 22(3) (2005) 628-631.
[19] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, 25(5) (1999) 755-794.
[20] A.M. Ardekani, R.H. Rangel, Numerical investigation of particle–particle and particle–wall collisions in a viscous fluid, Journal of Fluid Mechanics, 596 (2008) 437-466.
[21] R. Glowinski, Finite element methods for incompressible viscous flow, in: Handbook of Numerical Analysis, Elsevier, 2003, pp. 3-1176.
[22] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, in: The Essence of Geotechnical Engineering: 60 years of Géotechnique, pp. 305-329.
[23] A. Wachs, A DEM-DLM/FD method for direct numerical simulation of particulate flows: Sedimentation of polygonal isometric particles in a Newtonian fluid with collisions, Computers & Fluids, 38(8) (2009) 1608- 1628.
[24] A. Wachs, L. Girolami, G. Vinay, G. Ferrer, Grains3D, a flexible DEM approach for particles of arbitrary convex shape — Part I: Numerical model and validations, Powder Technology, 224 (2012) 374-389.
[25] B. Afra, M. Nazari, M.H. Keyhani, Proposing Immersed Boundary-Lattice Boltzmann-Lattice Spring Algorithm for Simulation of 2-D Deformable Plate in Steady Flow, Amirkabir Journal of Mechanical Engineering, 50(4) (2018) 683-696 (In Persian).
[26] Background in Multiphase Flows with Reactions, in: Fundamentals of Turbulent and Multiphase Combustion, pp. 509-575.
[27] A. Džiugys, B. Peters, An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers, Granular Matter, 3(4) (2001) 231- 266.
[28] M. Kodam, R. Bharadwaj, J. Curtis, B. Hancock, C. Wassgren, Cylindrical object contact detection for use in discrete element method simulations. Part I – Contact detection algorithms, Chemical Engineering Science, 65(22) (2010) 5852-5862.
[29] F.Y. Fraige, P.A. Langston, G.Z. Chen, Distinct element modelling of cubic particle packing and flow, Powder Technology, 186(3) (2008) 224-240.
[30] P.A. Cundall, Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3) (1988) 107-116.P. A. Thompson and G. S. Grest, "Granular flow: friction and the dilatancy transition," Physical Review Letters, vol. 67, p. 1751, 1991.
[31] P.A. Thompson, G.S. Grest, Granular flow: Friction and the dilatancy transition, Physical Review Letters, 67(13) (1991) 1751-1754.
[32] G.H. Ristow, Dynamics of granular materials in a rotating drum, Europhysics Letters (EPL), 34(4) (1996) 263-268.
[33] P.W. Cleary, DEM prediction of industrial and geophysical particle flows, Particuology, 8(2) (2010) 106-118.
[34] W. Cleary Paul, Large scale industrial DEM modelling, Engineering Computations, 21(2/3/4) (2004) 169-204.
[35] C.-Y. Wu, A.C.F. Cocks, Numerical and experimental investigations of the flow of powder into a confined space, Mechanics of Materials, 38(4) (2006) 304-324.
[36] A. Amiri Delouei, M. Nazari, M.H. Kayhani, S.K. Kang, S. Succi, Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann approach, Physica A: Statistical Mechanics and its Applications, 447 (2016) 1-20.
[37] D. Wan, S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method, International Journal for Numerical Methods in Fluids, 51(5) (2006) 531-566.
[38] J. Wu, C. Shu, Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme, Communications in Computational Physics, 7(4) (2010) 793.