شبیه‌سازی عددی تغییرشکل و تجزیه قطره در میدان الکتریکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگاه هوافضا، تهران، ایران

2 پژوهشکده سامان ههای حمل و نقل فضایی، پژوهشگاه فضایی ایران، تهران، ایران

3 مجتمع برق و الکترونیک، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

قطره‌ی مایع معلق در یک سیال دیگر در بسیاری از فرآیندهای طبیعی رخ می‌دهد. به کارگیری میدان الکتریکی چشم اندازی نوید بخشی را برای کنترل حرکت، تغییر شکل، تجزیه و هدایت قطره فراهم می‌کند. تحقیق حاضر به شبیه سازیِ پاسخ دینامیکی قطره‌ای معلق در سیالی دیگر، واقع در فضای میانِ دو الکترودِ رسانای دارای اختلاف پتانسیل الکتریکی می‌پردازد. در این راستا تاثیر پتانسیل الکتریکی، هدایت الکتریکی و گذردهی نسبی مورد بررسی قرار گرفته است. مطابق نتایج، افزایش پتانسیل الکتریکی و نسبت هدایت الکتریکی روندی افزایشی را برای تغییر شکل قطره به دنبال دارند، در حالی که افزایش گذردهی نسبی روندی کاهشی-افزایشی را برای تغییر شکل قطره به نمایش می‌گذارد. بررسی الگوی جریان سیال در داخل قطره نشان می‌دهد که قرارگیری قطره در میدان الکتریکیِ خارجی ضمن ایجاد قطبیت الکتریکی در قطره موجب القای میدانی الکتریکی در داخل آن می‌شود که به پیدایش گردابه هایی در درون قطره منتهی می‌شود. بزرگی یا کوچکی هدایت الکتریکی و گذردهی الکتریکی نسبت به یکدیگر کاملا بر ناحیه‌ی تجمع بارهای الکتریکی در سطح قطره تاثیر می‌گذارند که این تعیین کننده‌ی جهت چرخش گردابه‌های درونی قطره می‌باشد. افزایش پتانسیل الکتریکی و به تبع آن تقویت شدت میدان الکتریکی با افزایش تجمع بار الکتریکی در سطح قطره زمینه‌ی تغییر شکل قطره و سپس تجزیه و شکست آن را فراهم می‌سازد. در این حالت قطبیدگی الکتریکی ضمن ایجاد کشیدگی در قطره باعث خروج جت و ساطع شدن ریز قطراتی از آن می‌شود که استمرار این فرآیند با تقلیل جرم در هسته ی قطره اصلی به استهلاک نهایی قطره منجر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of Drop Deformation and Breakup in an Electric Field

نویسندگان [English]

  • H. Dastourani 1
  • M.R. Jahannama 2
  • A. Eslami Majd 3
1 Aerospace Research Institute, Tehran, Iran
2 Space Transportation Research Institute, Iranian Space Research Center, Tehran, Iran
3 Electrical and Electronics Department, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

Liquid drop suspension in another fluid occurs in many natural processes. Applying electric field has shown a promising outlook for the control of motion, deformation, breakup and guidance of the drops. In this study, the dynamic response of a liquid drop suspended in another fluid across two conducting electrodes held at different electrical potentials has been simulated. In this regard, the effects of electric potential, electrical conductivity and relative permittivity have been studied. According to results, an increase in electric potential and conductivity leads to increasing trend in drop deformation whereas this trend converts into an ascending-descending pattern due to increase in electrical permittivity. An insight into the flow patterns inside and outside the drop shows that the positioning of a liquid drop in an external electric field in addition to drop polarization results in an electric field induced within the drop which causes the creation of vortices inside the drop. Magnitude of electrical conductivity and permittivity factors compared to each other apparently affect the accumulation area of electrical charges on the drop surface which in turn determines the circulating direction of vortices within the drop. Increasing electric field intensity due to an increase in electrical potential or change in magnitude of other physical properties would fortify the electric charge on the drop surface escalating drop deformation towards drop breakup. In this condition, the electrical polarization in addition to drop prolation causes jet exit from which a continuous line of droplets is emerged until the total dissipation of the drop.

کلیدواژه‌ها [English]

  • Drop deformation
  • Electrical conductivity
  • Electrohydrodynamics
  • Numerical simulation
  • Relative permittivity
[1] A. Castellanos, Electrohydrodynamics, Springer, 1998.
[2] J.B. Fenn, M Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science, 246(4926) (1989) 64-71.
[3] N. Chetwani, C.A. Cassou, D.B. Go, H.C. Chang, High-frequency AC electrospray ionization source for mass spectrometry of biomolecules, Journal of the American Society for Mass Spectrometry, 21(11) (2010) 1852-1856.
[4] S. Banerjee, S. Mazumdar, Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte, International journal of analytical chemistry, 2012(1) (2012) 1-40.
[5] A.J. Rulison, R.C. Flagan, Electrospray atomization of electrolytic solutions, Journal of colloid and interface science, 167(1) (1994) 135-145.
[6] J. Yu, Y. Qiu, X. Zha, M. Yu, J. Yu, J. Rafique, J. Yin, Production of aligned helical polymer nanofibers by electrospinning, European Polymer Journal, 44(9) (2008) 2838-2844.
[7] A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning, Current opinion in colloid & interface science, 8(1) (2003) 64-75.
[8] H. Fong, I. Chun, D.H. Reneker, Beaded nanofibers formed during electrospinning, Polymer, 40(16) (1999) 4585-4592.
[9] D. Angmo, T.T. Larsen‐Olsen, M. Jørgensen, R.R. Søndergaard, F.C. Krebs, Roll‐to‐Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration, Advanced Energy Materials, 3(2) (2013) 172-175.
[10] M.K. Bologa, F.P. Grosu, I.V. Kozhevnikov, A.A. Polikarpov, O.I. Mardarskii, Characteristics of an electrohydrodynamic pump, Surface Engineering and Applied Electrochemistry, 50(5) (2014) 414-418.
[11] S.W. Welch, G. Biswas, Direct simulation of film boiling including electrohydrodynamic forces, Physics of Fluids, 19(1) (2007) 012106-11.
[12] O.V. Salata, Tools of nanotechnology: electrospray, Current nanoscience, 1(1) (2005) 25-33.
[13] A.T.S.A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology: an overview, Journal of Electrostatics, 66(3) (2008) 197-219.
[14] H. Yoon, J.H. Woo, Y.M. Ra, S.S. Yoon, H.Y. Kim, S. Ahn, J.H. Yun, J. Gwak, K. Yoon, S.C. James, Electrostatic spray deposition of copper–indium thin films, Aerosol Science and Technology, 45(12) (2011)1448-1455.
[15] M.L. Sweet, D. Pestov, G.C. Tepper, J.T. McLeskey, Electrospray aerosol deposition of water soluble polymer thin films, Applied Surface Science, 289(1) (2014)150-154.
[16] M. Mousavichoubeh, M. Shariaty-Niassar, M. Ghadiri, The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil, Chemical engineering science, 66(21) (2011) 5330-5337.
[17] J. Hua, L.K. Lim, C.H. Wang, C.H., Numerical simulation of deformation/motion of a drop suspended in viscous liquids under influence of steady electric fields, Physics of Fluids, 20(11) (2008) 113302-16.
[18] M.S. Shadloo, A. Rahmat, M. Yildiz, A smoothed particle hydrodynamics study on the electrohydrodynamic deformation of a droplet suspended in a neutrally buoyant Newtonian fluid, Computational Mechanics, 52(3) (2013) 693-707.
[19] C.T. O'Konski, H.C. Thacher Jr, The distortion of aerosol droplets by an electric field, The Journal of Physical Chemistry, 57(9) (1953) 955-958.
[20] C.T. O'Konski, F.E. Harris, Electric free energy and the deformation of droplets in electrically conducting systems, The Journal of Physical Chemistry, 61(9) (1957) 1172-1174.
[21] R.S. Allan, S.G. Mason, Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops, Proceedings of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 267(1328) (1962) 45-61.
[22] C.G. Garton, Z. Krasucki, Bubbles in insulating liquids: stability in an electric field, Proceedings of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 280(1381) (1964) 211-226.
[23] G. Taylor, Disintegration of water drops in an electric field, Proceedings of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 280(1382) (1964) 383-397.
[24] G. Taylor, Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field, Proceedings of the Royal Society of London, Series A, Mathematical, Physical and Engineering Sciences, 291(1425) (1966) 159-166.
[25] C.T.R. Wilson, G.I. Taylor, The bursting of soap-bubbles in a uniform electric field, in: Mathematical proceedings of the Cambridge, philosophical society, 22(5) (1925) 728-730.
[26] J.R. Melcher, G.I. Taylor, Electrohydrodynamics: a review of the role of interfacial shear stresses, Annual Review of Fluid Mechanics, 1(1) (1969) 111-146.
[27] J.R. Melcher, Continuum electromechanics. Cambridge, MIT press, 1981.
[28] D.A. Saville, Electrohydrodynamics: the Taylor-Melcher leaky dielectric model, Annual review of fluid mechanics, 29(1) (1997) 27-64.
[29] O.A. Basaran, L.E. Scriven, Axisymmetric shapes and stability of charged drops in an external electric field, Physics of Fluids A: Fluid Dynamics, 1(5) (1989) 799-809.
[30] T.C. Scott, O.A. Basaran, C.H. Byers, Characteristics of electric-field-induced oscillations of translating liquid droplets, Industrial & engineering chemistry research, 29(5) (1990) 901-909.
[31] J.Q. Feng, T.C. Scott, A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field, Journal of Fluid Mechanics, 311(1) (1996) 289-326.
[32] A. Fernandez, G. Tryggvason, J. Che, S.L. Ceccio, The effects of electrostatic forces on the distribution of drops in a channel flow: Two-dimensional oblate drops, Physics of Fluids, 17(9) (2005) 093302-14.
[33] G. Supeene, C.R. Koch, S. Bhattacharjee, Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media, Journal of colloid and interface science, 318(2) (2008) 463-476.
[34] O. Ghazian, K. Adamiak, G.S.P. Castle, Numerical simulation of electrically deformed droplets less conductive than ambient fluid, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423(1) (2013) 27-34.
[35] J.M. López-Herrera, S. Popinet, M.A. Herrada, A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid, Journal of Computational Physics, 230(5) (2011) 1939-1955.
[36] H. Paknemat, A.R. Pishevar, P. Pournaderi, Numerical simulation of drop deformations and breakup modes caused by direct current electric fields, Physics of Fluids, 24(10) (2012) 102101-26.
[37] Y. Lin, P. Skjetne, A. Carlson, A phase field model for multiphase electro-hydrodynamic flow, International Journal of Multiphase Flow, 45(1) (2012) 1-11.
[38] N.C. Lima, M.A. d’Avila, Numerical simulation of electrohydrodynamic flows of Newtonian and viscoelastic droplets, Journal of Non-Newtonian Fluid Mechanics, 213(1) (2014) 1-14.
[39] L. He, X. Huang, X. Luo, H. Yan, Y. Lü, D. Yang, Y. Han, Numerical study on transient response of droplet deformation in a steady electric field, Journal of Electrostatics, 82 (1) (2016) 29-37.
[40] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of computational physics, 100(2) (1992) 335-354.
[41] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 39(1) (1981) 201-225.
[42] Y.Y. Tsui, S.W. Lin, A VOF-Based Conservative Interpolation Scheme for Interface Tracking (CISIT) of Two-Fluid Flows, Numerical Heat Transfer, Part B: Fundamentals, 63(4) (2013) 263-283.
[43] W. Aniszewski, T. Ménard, M. Marek, Volume of Fluid (VOF) type advection methods in two-phase flow: a comparative study, Computers & Fluids, 97(1) (2014) 52-73.
[44] E. Olsson, G. Kreiss, A conservative level set method for two phase flow, Journal of computational physics, 210(1) (2005) 225-246.
[45] E. Olsson, G. Kreiss, S. Zahedi, A conservative level set method for two phase flow II, Journal of Computational Physics, 225(1) (2007) 785-807.
[46] Y. Lin, Two‐phase electro‐hydrodynamic flow modeling by a conservative level set model, Electrophoresis, 34(5) (2013) 736-744.
[47] D. Kuzmin, M. Möller, S. Turek, Multidimensional FEM‐FCT schemes for arbitrary time stepping, International journal for numerical methods in fluids, 42(3) (2003) 265-295.
[48] H. Rusche, Computational fluid dynamics of dispersed two-phase flows at high phase fractions, Doctoral dissertation, Imperial College London, 2003.
[49] S.M. Damián, N.M. Nigro, An extended mixture model for the simultaneous treatment of small‐scale and large‐scale interfaces, International Journal for Numerical Methods in Fluids, 75(8) (2014) 547-574.
[50] S.S. Deshpande, L. Anumolu, M.F. Trujillo, Evaluating the performance of the two-phase flow solver interFoam, Computational science & discovery, 5(1) (2012) 014016-36.
[51] J. Klostermann, K. Schaake, R. Schwarze, Numerical simulation of a single rising bubble by VOF with surface compression, International Journal for Numerical Methods in Fluids, 71(8) (2013) 960-982.
[52] F. Raees, D.R. Van der Heul, C. Vuik, Evaluation of the interface-capturing algorithm of OpenFoam for the simulation of incompressible immiscible two-phase flow, Technical Report, Delft, the Netherlands: Delft University of Technology, 2011.
[53] V. Emad, Evaluating the Performance of Various Convection Schemes on Free Surface Flows by Using Interfoam Solver, Doctoral dissertation, Eastern Mediterranean University, 2014.
[54] L. Rayleigh, On the equilibrium of liquid conducting masses charged with electricity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(87) (1982) 184-186.