پدیده شناسی رفتار قطره عبور‌کننده از یک محیط متخلخل در مقیاس حفره به روش شبکه بولتزمن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فنی مهندسی، آزاد اسلامی واحد تهران مرکزی، تهران، ایران

2 دانشکده هوافضا، دانشگاه صنعتی شریف، تهران، ایران

چکیده

مطالعه جریان سیالات تک فاز و چند فاز در محیط متخلخل هم در طبیعت و هم در صنایع از اهمیت بالایی برخوردار است و مورد توجه طیف وسیعی از محققین قرار دارد. به طور خاص، اندرکنش قطرات با سطوح متخلخل در بسیاری از فرآیندها مانند اسپری بر گهای گیاهان با آفت‌کش‌ها، چاپگرها، نفوذ باران و آب‌های سطحی به خاک کاربرد وسیعی دارد. هدف اصلی این پژوهش بررسی اثرات اندرکنش قطرات با یک محیط متخلخل است. قطرات از نظر ابعادی هم مقیاس با ابعاد حفره‌های محیط متخلخل هستند که در مواردی همچون نفوذ قطراتی با سایز خاص در بسترهای سنگی و بحث فیلترینگ قطرات کاربرد دارند. در این پژوهش محیط متخلخلی که متشکل از موانع مربع شکل با ضریب تخلخل 0/8 بوده، در معرض یک جریان دوفاز قرار می‌گیرد. محیط متخلخل توسط فاز اولی‌های ترشده، مورد هجوم قطرهای قرار می‌گیرد. رژیم حاکم بر جریان غیردارسی می باشد. اعداد بدون بعد مؤثر فیزیک مذکور عدد رینولدز، عدد کاپیلاری و آنسرج می‌باشند. در این پژوهش مقادیر فشار بی بعد وارده، 0/000108، 0/000144و 0/000180 و محدوده آنسرج مورد بررسی 0/76 -0/19  می‌باشند. فاکتورهای مرتبط با قطره و فاز زمینه )خواص سیالی(، مانند تنش سطحی و نسبت چگالی قطرات در کنار خصوصیات جریان )مانند فشار وارده( بسیار مؤثر بوده و تنوعی از حالات شکست قطرات را به وجود می‌آورد که در قالب مطالعه جامع پارامتریک مورد تجزیه و تحلیل قرار می‌گیرند. انواع حالات شکست قطره، طبقه‌بندی شده و در قالب تصاویر شاخص هر حالت، ارائه می شوند. درعین حال، تفکیک این حالات در نمودار رینولدز- آنسرج نیز )به عنوان یک نقشه رفتار شناسی شکست قطره بر حسب دو عدد بدون بعد و فشار وارده( صورت گرفته است. نتایج شبیه سازی‌های صورت گرفته قابلیت پیش بینی رفتار قطرات در محیط متخلخل را به کمک نمودارهای ارائه شده، در کنار مقایسه نسبی تأثیر پارامترهای مؤثر را امکان پذیر می‌سازند. همچنین، روش شبکه بولتزمن که در محیط متخلخل و جریان های چندفازی قابلیت و انعطاف پذیری بالایی نشان داده، مورد استفاده قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Phenomenological Study of Droplet Behavior Passing through a Porous Medium at Pore-Scale, Using Lattice Boltzmann Method

نویسندگان [English]

  • A Amiri Hezaveh 1
  • M.R. Salimi 2
  • M. Taeibi Rahni 2
1 Department of Mechanical Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran
2 Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

Single-phase and multiphase flows in porous media, both in nature and in industries, are very important for the wide range of researchers. Specifically, they have many applications in processes such as plant leaf sprays, pesticides, printers, and penetration of rain or surface waters to the soil. The main objective of this research is the analysis of droplet interaction with a porous medium. The droplets are of have similar scale of the pores of the porous medium, which its application is penetration of droplet with specific size into the bed rocks and filtering the droplets. In this study, the porous medium consists of square obstacles with porosity value of 0.8, is exposed to a two-phase flow. The porous medium that is wetted by primary phase is intruded by a droplet. The regimes of the flow is non-Darcian. The effective dimensionless numbers of the physics are Reynolds, Capillary, and Ohnesorge number. The values of exerted dimensionless pressure in the study are 0.000108, 0.000144, and 0.000180 and the range of Ohnesorge is 0.19-0.76. The factors connected with the droplet and secondary phase (related to fluid’s properties), such as surface tension and density ratio along with flow characteristics (such as exerted pressure) are effective and create variations in the behavior of droplet breakup, which in the frame of a comprehensive parametric study, are investigated. The types of droplet breakup, categorized and are presented by characteristic pictures of each case. Moreover, the zoning of each case in Re-Ohn Figure (as a droplet phenomenological breakup map on the basis of two dimensionless number and exerted pressure) is done. The results of the simulations, show the ability to predict droplet behavior in the porous medium using presented charts and moreover, make a comparison on relative effect of effective factors, are the redeeming features of this study. In this study, Lattice Boltzmann method is used as the numerical method that shows a high degree of capabilities and flexibility in relation with multi-phase flows and porous media.

کلیدواژه‌ها [English]

  • Porous Media
  • Pore-scale
  • Multiphase Flow
  • Droplet
  • Lattice Boltzmann method
[1] F.A.L. Dullien, Porous Media, Fluid Transport and Pore Structure, Academic Press, 1991.
[2] E. C. Donaldson, G. V. Chilingarian, and T.F. Yen, Enhanced Oil Recovery, I Fundamentals and Analyses, Elsevier,1985.
[3] D.B. Ingham, I. Pop, Transport Phenomena in Porous Media II, Elsevier, 2002.
[4] A.R.A. Khaled, K. Vafai, The Role of porous media in modeling flow and heat transfer in biological tissues, International Journal of Heat and Mass Transfer, 46(26) (2003) 4989-5003.
[5] J.S. Rowlinson, B. Widom, Porous media, Applications in Biological Systems and Biotechnology, 2011.
[6] C. Pan, L.-S. Luo, C.T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computer & Fluids, 35(8-9) (2006) 898-909.
[7] U. Aaltosalmi, Fluid Flow in Porous Media with the Lattice-Boltzmann Method, (No. 3/2005) (2005).
[8] A. K. Gunstensen, D. H. Rothman, Lattice-Boltzmann studies of immiscible two-Phase flow through porous media, Journal of Geophysical Research, 98(B4) (1993) 6431-6441.
[9] B. Ferreol, D. H. Rothman,Lattice-Boltzmann simulations of flow through fontainebleau sandstone, Transport in Porous Media, 20 (1995) 3-20.
[10] N. S. Martys, H. Chen, Simulation of multi-component fluids in complex three-dimensional geometries by the lattice Boltzmann method, Physical Review E, 53(1) (1996) 743.
[11] J. Tölke, M. Krafczyk, M. Schulz, and E. Rank, Lattice Boltzmann simulations of binary fluid flow through porous media, Philosophical Transactions of the Royal Society A, 360(1792) (2002) 535–545,.
[12] C.L. Lin, A.R. Videla, J.D. Miller, Advanced three-dimensional multiphase flow simulation in porous media reconstructed from X-ray microtomography using the He Chen Zhang lattice Boltzmann model, Flow Measurement and Instrumentation, 21(3) (2010) 255-261.
[13] X. Frank, P. Perré, Droplet spreading on a porous surface, A lattice Boltzmann study, Physics of Fluids, 24(4) (2012) 042101.
[14] H. Huang, Z. Li, L. Shuaishuai, X. Lu, Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-Phase flow in porous media, International Journal of Numerical Methods in Fluids, 61(3) (2009) 341-354.
[15] C. Pan, M. Hilpert, C.T. Miller, Lattice-Boltzmann simulation of two-phase flow in porous media, Water Resources Research, 40(1) (2004).
[16] L. Hao, P. Cheng, Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method, International Journal of Heat and Mass Transfer, 53(9-10) (2010) 1908-1913.
[17] Y. Tabe, L. Yongju, C. Takemi, K. Masaya, Numerical simulation of liquid water and gas flow in a channel and simplified gas diffusion layer model of polymer electrolyte membrane fuel cell using the lattice Boltzmann method, Journal of Power Sources, 193(1) (2009) 24-31.
[18] H. Huang, J. Huan, X. Lu, Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method, Computers & Fluids, 93 (2014) 164-172.
[19] H. Huan, L. Wang, X. Lu, Evaluation of three lattice Boltzmann models for multiphase flows in porous media, Computers and Mathematics with Applications, 61(12) (2014) 3606–3617.
[20] H. Liu, A. J. Valocchi, Q. Kang, C. Werth, Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method, Transport in Porous Media, 99(3) (2013) 555-580.
[21] N. Latifiyan, M. Farhadzadeh, P. Hanafizadeh, M. H. Rahimian, Numerical study of droplet evaporation in contactwith hot porous surface using lattice Boltzmann method, International Communications in Heat and Mass Transfer, 71 (2016) 56-74 .
[22] X. He, S. Chen, R. Zhang, A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh– Taylor Instability, Journal of Computational Physics, 152(2) (1999) 642-663.
[23] A. Javadi, D. Bastani, M. Taeibi-Rahni, Kh. Javadi, The effects of hydrodynamics characteristics on the mass transfer during droplet formation using computational approach, ASME's International Mechanical Engineering Congress and Exposition, (2006) 811-821.
[24] F. Chen, H. Hagen, A survey of interface tracking methods in multi-phase fluid visualization, Visualization of Large and Unstructured Data Sets - Applications in Geospatial Planning, Modeling and Engineering (Irtg 1131 Workshop), 19 (2011) 11-19.
[25] J.J. Cooper-White, J.E. Fagan, V. Tirtaatmadja, D.R. Lester, D.V. Boger, Drop formation dynamics of constant low-viscosity, Non-Newtonian Fluid Mechanics, 106(1) (2002) 29-59.
[26] P.M. Heertjes, L.H. De-Nie, D.H. De-Vries, Drop formation in liquid-liquid systems-II testing of the considerations given in part I, for drop volumes below the jetting velocity, a criterion for the jetting velocity, Chemical Engineering Science, 26(3) (1971) 441-449.
[27] A.G. Yiotis, J. Psihogios, M.E. Kainourgiakis, A. Papaioannou, A.K. Stubos, A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media, Colloids and Surfaces A-physicochemical and Engineering Aspects, 300(1-2) (2007) 35-49.
[28] Z.L. Yang, T.N. Dinh, R.R. Nourgaliev, B.R. Sehgal, Numerical investigation of bubble growth and detachment by the lattice Boltzmann method, International Journal of Heat and Mass Transfer, 44(1) (2001) 195-206.
[29] L.S. Kim, H.K. Jeong, M.Y. Ha, K.C. Kim, Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method, Journal of Mechanical Science and Technology, 22(4) (2008) 770-779.