بررسی عددی انتقال حرارت مختلط درون یک حفره حاوی نانوسیالات غیرنیوتنی با استفاده از مدل دو‌فازی مخلوط

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی، دانشگاه یاسوج، یاسوج، ایران

چکیده

در تحقیق حاضر، انتقال حرارت جابجایی مختلط در حفره ی پر شده از نانوسیال غیرنیوتنی با استفاده از مدل دوفازی مخلوط شبیه سازی شده است. نانوسیال آب- مس در این مسئله از خود رفتار سیالات رقیق شونده‌ی برشی را نشان می‌دهد. تأثیر رفتار غیرنیوتنی سیال با استفاده از مدل قانون توانی برای مقادیر مختلف شاخص قانون توانی بررسی شده است. پس از اعمال معادلات حاکم و مدل‌های مورد نظر در کد محاسباتی، اعتبارسنجی آن با شبیه سازی مسئله در حالت‌های سیال نیوتنی و غیرنیوتنی و مقایسه نتایج با کار دیگر محققین صورت پذیرفته است. پس از آن، شبیه سازی مسئله مورد نظر برای عدد ریچاردسون 0/001تا ،1شاخص قانون توانی 0/2تا 1و کسر حجمی نانوذرات صفر تا 0/09صورت پذیرفته است. نتایج به دست آمده نشان می‌دهند که افزایش عدد ریچاردسون سبب کاهش انتقال حرارت می‌گردد. در تمامی اعداد ریچاردسون با کاهش شاخص قانون توانی، عدد ناسلت میانگین کاهش می‌یابد. با افزایش کسر حجمی از صفر تا 0/09در شاخص قانون توانی ،0/2 عدد ناسلت میانگین برای ریچاردسون 0/001در حدود % 15/75و برای ریچاردسون 1در حدود % 17/32افزایش پیدا می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of Mixed Convection Heat Transfer in a Cavity Filled with NonNewtonian Nanofluids Utilizing Two-phase Mixture Model

نویسندگان [English]

  • N. Hazeri-Mahmel
  • Y. Shekari
  • A. Tayebi
Mechanical Engineering Department, Yasouj University, Yasouj, Iran
چکیده [English]

: In the present research, the problem of mixed convection flow of a non-Newtonian nanofluid in a lid-driven cavity is simulated using a two-phase mixture model. Nanofluid of water-copper in this problem shows a shear-thinning behavior. To study the effects of non-Newtonian fluid with power-law model on the amount of heat transfer, various power-law indices are considered. After applying the governing equations and related models in the computational code, its validation is done by simulating the problem with Newtonian and non-Newtonian fluid behavior and comparing the results with those of other researchers. Afterwards, simulation of the problem is accomplished for the Richardson numbers of 0.001-1 and power-law indices of 0.2-1 while the volume fraction of nanoparticles alters from 0 to 0.09. The obtained results show that the increase in Richardson number decreases the amount of heat transfer. For all Richardson number decrease in the power law index leads to a decrease in the average Nusselt number. Variation of volume fraction from 0 to 0.09 at the power law index of 0.2 leads to an approximate increase of 15.75% and 17.32% in the average Nusselt number for Ri=0.001 and 1, respectively.

کلیدواژه‌ها [English]

  • Nanofluid
  • Non-Newtonian fluid
  • Two-phase mixture model
  • Power law model
[1] R. Iwatsu, J.M. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient, International Journal of Heat and Mass Transfer, 36(6) (1993) 1601-1608.
[2] M. Sharif, Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom, Applied thermal engineering, 27(5) (2007) 1036-1042.
[3] M. Alinia, D.D. Ganji, M. Gorji-Bandpy, Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model, International Communications in Heat and Mass Transfer, 38(10) (2011) 1428-1435.
[4] M. Akbari, N. Galanis, A. Behzadmehr, Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer, International Journal of Thermal Sciences, 50(8) (2011) 1343-1354.
[5] H. Aminfar, M. Mohammadpourfard, S.A. Zonouzi, Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field, Journal of Magnetism and Magnetic materials, 327 (2013) 31-42.
[6] A. Behzadmehr, M. Saffar-Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, International Journal of Heat and Fluid Flow, 28(2) (2007) 211-219.
[7] Y.-j. Chen, Y.-y. Li, Z.-h. Liu, Numerical simulations of forced convection heat transfer and flow characteristics of nanofluids in small tubes using two-phase models, International Journal of Heat and Mass Transfer, 78 (2014) 993-1003.
[8] M. Hejazian, M.K. Moraveji, A. Beheshti, Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube, International Communications in Heat and Mass Transfer, 52 (2014) 152-158.
[9] R. Deepak Selvakumar, S. Dhinakaran, Forced convective heat transfer of nanofluids around a circular bluff body with the effects of slip velocity using a multi-phase mixture model, International Journal of Heat and Mass Transfer, 106 (2017) 816-828.
[10] M. Siavashi, M. Jamali, Heat transfer and entropy generation analysis of turbulent flow of TiO2-water nanofluid inside annuli with different radius ratios using two-phase mixture model, Applied Thermal Engineering, 100 (2016) 1149-1160.
[11] Y. Abbassi, A.S. Shirani, S. Asgarian, Two-phase mixture simulation of Al 2 O 3/water nanofluid heat transfer in a non-uniform heat addition test section, Progress in Nuclear Energy, 83 (2015) 356-364.
[12] F. Garoosi, B. Rohani, M.M. Rashidi, Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating, Powder Technology, 275 (2015) 304-321.
[13] M. Goodarzi, M. Safaei, K. Vafai, G. Ahmadi, M. Dahari, S. Kazi, N. Jomhari, Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model, International Journal of Thermal Sciences, 75 (2014) 204-220.
[14] R. Lotfi, Y. Saboohi, A.M. Rashidi, Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, International Communications in Heat and Mass Transfer, 37(1) (2010) 74-78.
[15] S. Gao, J. Hartnett, Non-Newtonian fluid laminar flow and forced convection heat transfer in rectangular ducts, International communications in heat and mass transfer, 19(5) (1992) 673-686.
[16] J. Peixinho, C. Desaubry, M. Lebouche, Heat transfer of a non-Newtonian fluid (Carbopol aqueous solution) in transitional pipe flow, International journal of heat and mass transfer, 51(1) (2008) 198-209.
[17] H. Chang, C. Jwo, C. Lo, T. Tsung, M. Kao, H. Lin, Rheology of CuO nanoparticle suspension prepared by ASNSS, Rev. Adv. Mater. Sci, 10(2) (2005) 128-132.
[18] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 49(1) (2006) 240-250.
[19] A. Esmaeilnejad, H. Aminfar, M.S. Neistanak, Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids, International Journal of Thermal Sciences, 75 (2014) 76-86.
[20] I. Behroyan, P. Ganesan, S. He, S. Sivasankaran, Turbulent forced convection of Cu–water nanofluid: CFD model comparison, International Communications in Heat and Mass Transfer, 67 (2015) 163-172.
[21] P. Ternik, R. Rudolf, Laminar natural convection of non-Newtonian nanofluids in a square enclosure with differentially heated side walls, International journal of simulation modelling, 12(1) (2013) 5-16.
[22] A. Raisi, Natural Convection of Non-Newtonian Fluids in a Square Cavity with a Localized Heat Source, Strojniški vestnik-Journal of Mechanical Engineering, 62(10) (2016) 553-564.
[23] A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid, International Journal of Thermal Sciences, 47(9) (2008) 1113-1122.
[24] A. Abbasian Arani, G. Sheikhzadeh, A. Ghadirian Arani, Study of Fluid Flow and Heat Transfer of AL2O3-Water as a Non-Newtonian Nanofluid through Lid-Driven Enclosure, Transport Phenomena in Nano and Micro Scales, 2(2) (2014) 118-131.
[25] G.R. Kefayati, FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field, International Journal of Thermal Sciences, 95 (2015) 29-46.
[26] G. Kefayati, Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity, Powder Technology, 299 (2016) 127-149.
[27] M. Mohammadpourfard, Numerical study of magnetic fields effects on the electrical conducting non-newtonian  ferrofluid flow through a vertical channel, Modares Mechanical Engineering Journal, 15 (2015) 379-389 (in Persian).
[28] A.Y. Varaksin, Turbulent particle-laden gas flows, Springer, 2007.
[29] M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow, in, Technical Research Centre of Finland 1996, pp. 9-18.
[30] L. Schiller, Z. Naumann, A drag coefficient correlation, Vdi Zeitung, 77(318) (1935) 318-320.
[31] X. Wang, X. Xu, S.U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture, Journal of thermophysics and heat transfer, 13(4) (1999) 474-480.
[32] H. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20(4) (1952) 571-571.
[33] R.P. Chhabra, J.F. Richardson, Non-Newtonian flow and applied rheology: engineering applications, Butterworth-Heinemann, 2011.
[34] L. Chen, J. Zang, A. Hillis, G. Morgan, A. Plummer, Numerical investigation of wave–structure interaction using OpenFOAM, Ocean Engineering, 88 (2014) 91-109.
[35] X. Meng, X. Zhang, Q. Li, Numerical investigation of nanofluid natural convection coupling with nanoparticles sedimentation, Applied Thermal Engineering, 95 (2016) 411-420.
[36] G.R. Kefayati, FDLBM simulation of magnetic field effect on mixed convection in a two sided lid-driven cavity filled with non-Newtonian nanofluid, Powder Technology, 280 (2015) 135-153.