بررسی تجربی انتقال حرارت جابجایی اجباری نانوسیال در لوله انحنادار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

در این مقاله انتقال حرارت جابه جایی اجباری آب و نانوسیال آب آلومینا در لوله­های خمیده دما ثابت در محدوده دین 81/98 تا 29 / 749 بصورت تجربی مورد بررسی قرار گرفته است. با توجه به مطالعات انجام شده، انتقال حرارت جابه جایی اجباری نانوسیال در لوله­های خمیده با نسبت انحناهای مختلف و با دمای سطح ثابت بطور کامل بررسی نشده و مطالعات عمیق­تری در این خصوص نیاز است. در این آزمایش آب و نانوسیال آب آلومینا با درصد حجمی 1/ 0 مورد استفاده قرار گرفته و همچنین از سه لوله خمیده با نسبت انحنای 116 / 0 ، 074 / 0 و 042 / 0 و مساحت سطح خارجی برابر و جنس یکسان استفاده شده است.پس از اندازه­گیری دمای ورودی و خروجی لوله، عدد ناسلت متوسط و افت فشار در لوله اندازه­گیری می­شود. با تکرار آزمایش، نتایج به دست آمده به وسیله روابط آماری در بازه اطمینان نمایش داده می شوند. همچنین از روابط تئوری موجود برای لوله های خمیده، جهت صحت سنجی نتایج تجربی افت فشار استفاده شده است. نتایج به­دست آمده نمایانگر افزایش حداکثر 15 درصدی عدد ناسلت در اثر استفاده از نانوسیال آب آلومینا با 1/ 0 درصد حجمی نسبت به سیال پایه است. همچنین اثر نسبت انحنا بر انتقال حرارت سیال عامل مورد بررسی قرار گرفته و نشان دهنده افزایش قابل ملاحظه انتقال حرارت جابه­جایی لوله خمیده با نسبت انحنا کوچک تر در مقایسه با لوله با نسبت انحنای بزر گتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Investigation of the Forced Convection Heat Transfer of Nanofluids in Curved Tubes

نویسندگان [English]

  • M. Nazari 1
  • S. Maleki-Delarestaghi1 1
  • A. Shakeri 2
1 Mechanical Engineering Department, Shahrood University of Technology, Shahrood, Iran
2 Mechanical Engineering Department, Khajeh Nasir Toosi University of Technology, Tehran, Iran
چکیده [English]

In this paper, the forced convective heat transfer of Alumina/water nanofluid is experimentally investigated in uniform-temperature curved tubes in the range of 0<De<800. The curved tubes are horizontally installed inside a cubic reservoir which contains phase-change water. A review of the literature shows that analyzing the forced convective heat transfer in uniform-temperature curved tube needs more investigations. In this experimental study, Alumina/water nanofluid with the volume fraction of 0.1 and different curved tubes with the curvature of 0.116, 0.074 and 0.042 are employed. The Nusselt number is calculated after measuring the temperature of the fluid at entrance and exit. Also, the pressure drop of nanofluid inside the curved tubes has been measured. The accuracy of the experimental results has also been validated by the available theoretical data in the literature. The obtained results are reported by using the confidence interval error bars. The results show a maximum increase of 15% in Nusselt number in the presence of Alumina/water nanofluid in comparison to the base fluid. Effects of curvature on heat transfer rate are also studied which show a considerable growth in the convective heat transfer in the tube with small curvatures.

کلیدواژه‌ها [English]

  • Convective Heat Transfer
  • Nanofluids
  • Curved tubes
  • Experimental study
[1] C.E. Kalb, J. Seader, Fully developed viscous—flow heat transfer in curved circular tubes with uniform wall temperature, AIChE Journal, 20(2) (1974) 340-346.
[2] V. Kumar, P. Gupta, K. Nigam, Fluid flow and heat transfer in curved tubes with temperature-dependent properties, Industrial & engineering chemistry research, 46(10) (2007) 3226-3236.
[3] S. Mandal, S. Das, Pressure losses in bends during two-phase gas− Newtonian liquid flow, Industrial & engineering chemistry research, 40(10) (2001) 2340-2351.
[4] P. Naphon, S. Wongwises, A review of flow and heat transfer characteristics in curved tubes, Renewable and sustainable energy reviews, 10(5) (2006) 463-490.
[5] J. Prusa, L. Yao, Numerical solution for fully developed flow in heated curved tubes, Journal of Fluid Mechanics, 123 (1982) 503-522.
[6] F. Van de Vosse, A. Van Steenhoven, A. Segal, J. Janssen, A finite element analysis of the steady laminar entrance flow in a 90 curved tube, International journal for numerical methods in fluids, 9(3) (1989) 275-287.
[7] L.-S. Yao, S.A. Berger, Flow in heated curved pipes, Journal of Fluid Mechanics, 88(2) (1978) 339-354.
[8] S. Chol, J. Estman, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed, 231 (1995) 99-106.
[9] K. Anoop, T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the
developing region, International journal of heat and mass transfer, 52(9-10) (2009) 2189-2195.
[10] H. Chen, W. Yang, Y. He, Y. Ding, L. Zhang, C. Tan, A.A. Lapkin, D.V. Bavykin, Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids), Powder Technology, 183(1) (2008) 63-72.
[11] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 49(1-2) (2006) 240-250.
[12] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, International journal of heat and mass transfer, 50(11-12) (2007) 2272-2281.
[13] S.Z. Heris, M.N. Esfahany, G. Etemad, Investigation of CuO/water nanofluid laminar convective heat transfer through a circular tube, Journal of Enhanced Heat Transfer, 13(4) (2006).
[14] S.Z. Heris, M.N. Esfahany, S.G. Etemad, Experimental investigation of convective hea transfer of Al2O3/water nanofluid in circular tube, International Journal of Heat and Fluid Flow, 28(2) (2007) 203-210.
[15] S.Z. Heris, S.G. Etemad, M.N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, International Communications in Heat and Mass Transfer, 33(4) (2006) 529-535.
[16] K.S. Hwang, S.P. Jang, S.U. Choi, Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, International journal of heat and mass transfer, 52(1-2) (2009) 193-199.
[17] W. Lai, S. Vinod, P. Phelan, R. Prasher, Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube, Journal of Heat Transfer, 131(11) (2009) 112401.
[18] Q. Li, Y. Xuan, Convective heat transfer and flow characteristics of Cu-water nanofluid, Science in China Series E: Technolgical Science, 45(4) (2002) 408-416.
[19] U. Rea, T. McKrell, L.-w. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, International Journal of Heat and Mass Transfer, 52(7-8) (2009) 2042-2048.
[20] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International journal of heat and mass transfer, 47(24) (2004) 5181-5188.
[21] Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, International Journal of Heat and Mass Transfer, 48(6) (2005) 1107-1116
[22] A. Akbarinia, Impacts of nanofluid flow on skin friction factor and Nusselt number in curved tubes with constant mass flow, International Journal of Heat and Fluid Flow, 29(1) (2008) 229-241.
[23] S. Mirmasoumi, A. Behzadmehr, Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Applied Thermal Engineering, 28(7) (2008) 717-727.
[24] M. Akbari, A. Behzadmehr, F. Shahraki, Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid, International Journal of Heat and Fluid Flow, 29(2) (2008) 545-556.
[25] A. Akbarinia, A. Behzadmehr, Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes, Applied Thermal Engineering, 27(8-9) (2007) 1327-1337.
[26] Y. He, Y. Men, X. Liu, H. Lu, H. Chen, Y. Ding, Study on forced convective heat transfer of non-Newtonian nanofluids, Journal of Thermal Science, 18(1) (2009) 20-26.
[27] S.E.B. Maiga, S.J. Palm, C.T. Nguyen, G. Roy, N. Galanis, Heat transfer enhancement by using nanofluids in forced convection flows, International journal of heat and fluid flow, 26(4) (2005) 530-546.
[28] S. Mirmasoumi, A. Behzadmehr, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, International Journal of Heat and Fluid Flow, 29(2) (2008) 557-566.
[29] A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates, International Journal of Thermal Sciences, 48(2) (2009) 391-400.
[30] W.R. Hawthorne, Secondary circulation in fluid flow, Proc. R. Soc. Lond. A, 206(1086) (1951) 374-387.
[31] P. Moulin, P. Manno, J. Rouch, C. Serra, M. Clifton, P. Aptel, Flux improvement by Dean vortices: ultrafiltration of colloidal suspensions and macromolecular solutions, Journal of Membrane Science, 156(1) (1999) 109-130.
[32] J.H. Grindley, A. Gibson, On the frictional resistances to the flow of air through a pipe, Proc. R. Soc. Lond. A, 80(536) (1908) 114-139.
[33] C. Kalb, J. Seader, Heat and mass transfer phenomena for viscous flow in curved circular tubes, International Journal of Heat and Mass Transfer, 15(4) (1972) 801-817.
[34] A. Akbarinia, R. Laur, Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a two phase approach, International Journal of Heat and Fluid Flow, 30(4) (2009) 706-714.
[35] E.E. Bajestan, H. Niazmand, M. Renksizbulut, Flow and heat transfer of nanofluids with temperature dependent properties, in: ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, American Society of Mechanical Engineers, 2010, pp. 733-739.
[36] E. Ebrahimnia-Bajestan, H. Niazmand, Convective heat transfer of nanofluids flows through an isothermally heated curved pipe, Iranian journal of chemical engineering, 8(2) (2011) 81-97.
[37] J. Choi, Y. Zhang, Numerical simulation of laminar forced convection heat transfer of Al2O3–water nanofluid in a pipe with return bend, International Journal of Thermal Sciences, 55 (2012) 90-102.
[38] H. Aminfar, M. Mohammadpourfard, Y.N. Kahnamouei, Numerical study of magnetic field effects on the mixed convection of a magnetic nanofluid in a curved tube, International Journal of Mechanical Sciences, 78 (2014) 81-90.
[39] M. Di Liberto, M. Ciofalo, A study of turbulent heat transfer in curved pipes by numerical simulation, International Journal of Heat and Mass Transfer, 59 (2013) 112-125.
[40] M. Ciofalo, A. Arini, M. Di Liberto, On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils, International Journal of Heat and Mass Transfer, 82 (2015) 123-134.
[41] X. Wang, X. Xu, S.U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture, Journal of thermophysics and heat transfer, 13(4) (1999) 474-480.
[42] A. Einstein, Investigations on the Theory of the Brownian Movement, Courier Corporation, 1956.
[43] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, 11(2) (1998) 151-170.
[44] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of heat and Mass transfer, 43(19) (2000) 3701-3707.
[45] J. Maxwell, Electricity and Magnetism, v. 1, in, Oxford, Clarendon Press, 1892.
[46] M. Nazari, M. Ashouri, M.H. Kayhani, A. Tamayol, Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam, International Journal of Thermal Sciences, 88 (2015) 33-39.
[47] S. Bell, Measurement good practice guide no. 11 (issue 2), A Beginner’s Guide to Uncertainty of Measurement. National Physical Laboratory Teddington, Middlesex, United Kingdom, (2001).
[48] R.J. Moffat, Describing the uncertainties in experimental results, Experimental thermal and fluid science, 1(1) (1988) 3-17.
[49] M. Chandrasekar, S. Suresh, Experiments to explore the mechanisms of heat transfer in nanocrystalline alumina/water nanofluid under laminar and turbulent flow conditions, Experimental Heat Transfer, 24(3) (2011) 234-256.
[50] H. Ito, Friction factors for turbulent flow in curved pipes, Trans. ASME, J. Basic Engng, D, 81 (1959) 123-134.