[1] Soleymanpour, M., Vrat, P., Shankar, R., "A transiently chaotic neural network approach to the design of cellular manufacturing", International Journal of Production Research, Vol. 40 (10), p.p. 2225–2244, 2002.
[2] Yoshida, T., Hitomi, K., "Optimal two-stage production scheduling with setup times separated", AIIE Transactions, Vol. 11, p.p. 261–263, 1979.
[3] Sekiguchi, Y., "Optimal schedule in a GT-type flow-shop under series-parallel precedence constraints", Journal of the Operations Research Society of Japan, Vol. 26, p.p. 226–251, 1983.
[4] Baker, K.R., "Scheduling groups of jobs in the two machine flow shop", Mathematical and Computer Modeling, Vol. 13, p.p. 29-36, 1990.
[5] Yang, D.L., Chern, M..S., "Two-machine flow shop group scheduling problem", Computers & Operations Research, Vol. 27, p.p. 975–985, 2000.
[6] Hitomi, K., Ham, I., "Operations scheduling for group technology applications", Annals of the CIRP, Vol. 25 (1), p.p. 419–422, 1976.
[7] Logendran, R., Sriskandarajah, C., "Two-machine group scheduling problem with blocking and anticipatory setups", European Journal of Operational Research, Vol. 69 (3), p.p., 467–481., 1993.
[8] Logendran, R., Nudtasomboon, N., "Minimizing the makespan of a group scheduling problem: A new heuristic", International Journal of Production Economics, Vol. 22, p.p. 217–230, 1991.
[9] Nawaz, M., Enscore, J.E.E., Ham, I., "A heuristic algorithm for the m-machine, n-job flow shop sequencing problem", OMEGA: International Journal of Management Science, Vol. 11 (1), p.p. 91–95., 1983.
[10] Wemmerl. ov, U., Vakharia, A.J., "Job and family scheduling of a flow-line manufacturing cell: A simulation study", IIE Transactions, Vol. 23 (4), p.p. 383–393, 1991.
[11] Mahmoodi, F., Dooley, K.J., "Group scheduling and order releasing: Review and foundations for research", Production Planning & Control, Vol. 3 (1), p.p. 70–80, 1992.
[12] Eom, D.H., Shin, H.J., Kwun, I.H., Shim, J.K., Kim, S.S., "Scheduling jobs on parallel machines with sequence-dependent family setup times". Advanced Manufacturing Technology, Vol. 19, p.p. 926–932, 2002.
[13] Logendran, R., Mai, L., Talkington, D., "Combined heuristics for bi-level group scheduling problems", International Journal of Production Economics, Vol. 38, p.p. 133–145, 1995.
[14] Campbell, H.G., Dudek, R.A., Smith, M.L., "A heuristic algorithm for the n job, m machine sequencing problem", Management Science, Vol. 16, p.p. 630-637. 1970.
[15] Yang, W. H., Liao, C. J., "Group scheduling on two cells with inter-cell movement", Computers & Operations Research, Vol. 23 (10), p.p. 997–1006, 1996.
[16] Schaller, J., "A new lower bound for the flow shop group scheduling problem", Computers & Industrial Engineering, Vol. 41, p.p. 151–161, 2001.
[17] Schaller, J.E., Gupta, J.N.D., Vakharia, A.J., "Scheduling a flowline manufacturing cell with sequence dependent family setup times". European Journal of Operational Research, Vol. 125, p.p. 324–339, 2000.
[18] Franca, P.M., Gupta, J.N.D., Mendes, A.S., Moscato, P., Veltink, K.J., "Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups". Computers & Industrial Engineering, Vol. 48 (3), p.p. 491–506, 2005.
[19] Hendizadeh, S.H., Faramarzi, H., Mansouri, S.A., "Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times". International Journal of Production Economics, Vol. 111 (2), p.p. 593-605, 2008.
[20] Tavakkoli-Moghaddam, R., Gholipour-Kanani, Y., Cheraghalizadeh, R., "A genetic algorithm and memetic algorithm to sequencing and scheduling of cellular manufacturing systems", International Journal of Management Science and Engineering Management, Vol. 3 (2), pp. 119-130, 2008.
[21] Holland, J.; Adaptation natural and artificial systems, University of Michigan press, An Arbor, MI, MIT Press, Cambridge, Ma, 1975.
[22] Gen, M., Cheng, R.; Genetic algorithms & engineering design, New York, A Wiley Interscience Publication, 1997.