طراحی کنترلر فازی بهینه به‌منظور کنترل نیمه‌فعال ارتعاشات ساختمان چند طبقه با استفاده از یک مدل پارامتر گسترده و میراگرهای مگنتوریولوژیکال

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

هدف اصلی مقاله، ارائه کنترلر فازی بهینه به منظور کنترل ارتعاشات یک ساختمان پنج طبقه به کمک میراگرهای مگنتوریولوژیکال در اثر تحریک ناشی از زلزله است. بدین منظور معادلات حرکت ساختمان با استفاده از مدل با پارامتر گسترده استخراج شده است. در ادامه، بعد از به دست آوردن شکل مودهای ساختمان با روش المان محدود، برای هر طبقه از ساختمان یک میراگر مگنتوریولوژیکال در نظر گرفته می‌شود. به منظور دستیابی به قوانین کنترلر فازی، یک سیستم ساده یک درجه آزادی مورد بررسی قرار گرفته است و قوانین به دست آمده از شبیه سازی حلقه باز، به منظور استفاده در کنترل ارتعاشات ساختمان تعمیم می‌یابد. همچنین از مدل پیشنهاد شده‌ی اسپنسر برای تحلیل رفتار میراگر مگنتوریولوژیکال بهره گرفته شده است. بر اساس درک به دست آمده از عملکرد میراگر و همچنین با استفاده از قوانین فازی به دست آمده از شبیه سازی سیستم یک درجه آزادی، کنترلر فازی درجهت کاهش دامنه ارتعاشات ساختمان در برابر زلزله طراحی گردیده است. در انتها نیز از الگوریتم ژنتیک به منظور بهبود شاخص‌های عملکرد کنترلر استفاده شده است. مقایسه نتایج به دست آمده از کنترل نیمه فعال با کنترل‌های غیرفعال-بدون ولتاژ و غیرفعال-با ولتاژ، نشان می‌دهد که کنترلر فازی بهینه به خوبی دامنه ارتعاشات طبقات ساختمان را کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of Optimal Fuzzy Controllers for Semi Active Vibration Suppression of MultiFloor Buildings Based on a Distributed Parameter Model and Magneto Rheological Dampers

نویسندگان [English]

  • N. Aliakbari
  • H. Moeenfard
School of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

The main objective of this paper is to propose an optimal fuzzy controller for suppressing the resulting vibration of an earthquake in a five floor building facilitated with magneto rheological damper. To this end, by utilizing the Hamilton’s principle, equations of motion of the system are derived based on a distributed parameter model. The mode shapes of the system are found by finite element simulations. A magneto rheological damper is used for each floor. To find the rule base of the fuzzy controller, a single degree of freedom vibratory system is considered and the rules derived from open loop simulations are utilized for controlling the vibration of the building. Spencer’s model is employed for analyzing the behavior of the magneto rheological damper. By recognizing the magneto rheological damper behavior as well as having the rule based obtained from single degree of freedom simulations, a fuzzy controller is designed to suppress the vibration of the building. Finally, the genetic algorithm is used to improve the performance of the proposed controller. Comparing the results of semi-active vibration control with passive-on and passive-off control strategies reveals that the suggested fuzzy controller can effectively reduce the amplitude of the vibration of the building.

کلیدواژه‌ها [English]

  • Semi-active vibration control
  • Multi-floors Building
  • Magneto rheological dampers
  • Distributed param
[1] S. Arunsawatwong, Critical control of building under seismic disturbance, in: Control Systems Design, Springer, (2005) 339-354.
[2] Z. Li, Z. Deng, Z. Gu, New sliding mode control of building structure using RBF neural networks, in: 2010 Chinese Control and Decision Conference, IEEE, (2010) 2820-2825.
[3] R. Tikani, S. Ziaei-Rad, M. Sfahanian, Simulation and experimental evaluation of a magneto-rheological hydraulic engine mount, Modares Mechanical Engineering, 14 (2014) 43-49 (In Persian یسراف).
[4] Y. Hojjat, K. Kakavand, M. Ghodsi, A.A. Maddah, Study on the Transient State behavior of Magneto Rheological Fluid in Magnetic Coupling, Modares Mechanical Engineering, 14 (2014) 156-162 (In Persian یسراف).
[5] M. Asgari, Gh. Payganeh, K. Malekzade Fard, F. Rashed Saghavaz, A parametric study of the free vibration analysis of composite sandwich plate with magneto-rheological smart core, ModaresMechanical Engineering , 15(2015) 396-404 (In Persian یسراف).
[6] O. Yoshida, S.J. Dyke, Seismic control of a nonlinear benchmark building using smart dampers, Journal of engineering mechanics, 130(4) (2004) 386-392.
[7] M. Bitaraf, S. Hurlebaus, Semi-active adaptive control of seismically excited 20-story nonlinear building, Engineering Structures, 56 (2013) 2107-2118.
[8] Y.J. Cha, A.K. Agrawal, Seismic retrofit of MRF buildings using decentralized semi‐active control for multi‐target performances, Earthquake Engineering & Structural Dynamics, 46(3) (2017) 409-424.
[9] S.D. Nguyen, Q.H. Nguyen, S.-B. Choi, Hybrid clustering based fuzzy structure for vibration control–Part 1: A novel algorithm for building neuro-fuzzy system, Mechanical Systems and Signal Processing, 50 (2015) 510-525.
[10] M. Askari, J. Li, B. Samali, Semi-active LQG control of seismically excited nonlinear buildings using optimal Takagi-Sugeno inverse model of MR dampers, Procedia Engineering, 14 (2011) 2765-2772.
[11] L. Zhou, C.-C. Chang, L.-X. Wang, Adaptive fuzzy control for nonlinear building-magnetorheological damper system, Journal of Structural Engineering, 129(7) (2003) 905-913.
[12] A. Bathaei, S.M. Zahrai, M. Ramezani, Semi-active seismic control of an 11-DOF building model with TMD+ MR damper using type-1 and-2 fuzzy algorithms, Journal of Vibration and Control, (2017) 1077546317696369.
[13] X. Lin, S. Chen, A modified shuffled frog-leaping algorithm-based fuzzy controller for magnetorheological damper-building system, International Journal of Computer Applications in Technology, 53(3) (2016) 279-289.
[14] G. Yan, L.L. Zhou, Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers, Journal of sound and vibration, 296(1) (2006) 368-382.
[15] H.-S. Kim, Multi-input multi-output semiactive fuzzy control os seismic-excited building with evolutionary optimization algorithms, International Journal of Control and Automation, 7(6) (2014) 143-152.
[16] M. Bitaraf, O.E. Ozbulut, S. Hurlebaus, L. Barroso, Application of semi-active control strategies for seismic protection of buildings with MR dampers, Engineering Structures, 32(10) (2010) 3040-3047.
[17] Z.Q. Gu, S.O. Oyadiji, Application of MR damper in structural control using ANFIS method, Computers & structures, 86(3) (2008) 427-436.
[18] A. K-Karamodin, H. H-Kazemi, Semi-active control of structures using neuro-predictive algorithm for MR dampers, Structural control & health monitoring, 17(3) (2010) 237.
[19] L.M. Jansen, S.J. Dyke, Semiactive control strategies for MR dampers: comparative study, Journal of Engineering Mechanics, 126(8) (2000) 795-803.
[20] M.E. Uz, M.N. Hadi, Optimal design of semi active control for adjacent buildings connected by MR damper based on integrated fuzzy logic and multi-objective genetic algorithm, Engineering Structures, 69 (2014) 135-148.
[21] K.M. Choi, S.W. Cho, H.J. Jung, I.W. Lee, Semi‐active fuzzy control for seismic response reduction using magnetorheological dampers, Earthquake engineering & structural dynamics, 33(6) (2004) 723-736.
[22] Y.-J. Cha, J.-W. Bai, Seismic fragility estimates of a moment-resisting frame building controlled by MR dampers using performance-based design, Engineering Structures, 116 (2016) 192-202.
[23] Y. Kim, R. Langari, S. Hurlebaus, MIMO fuzzy identification of building-MR damper systems, Journal of Intelligent & Fuzzy Systems, 22(4) (2011) 185-205.
[24] N.K. Chandiramani, Semiactive Control of Earthquake/Wind Excited Buildings Using Output Feedback, Procedia Engineering, 144 (2016) 1294-1306.
[25] M. E Uz, P. Sharafi, Investigation of the optimal semi-active control strategies of adjacent buildings connected with magnetorheological dampers, Iran University of Science & Technology, 6(4) (2016) 523-546.
[26] S. Dumne, M. Shrimali, S. Bharti, Earthquake performance of hybrid controls for coupled buildings with MR dampers and sliding base isolation, Asian J. Civ. Eng, 18 (2017) 63-97.
[27] N.K. Chandiramani, G.B. Motra, Lateral-torsional response control of MR damper connected buildings, in: ASME 2013 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, (2013) V04BT04A056-V004BT004A056.
[28] L. Meirovitch, Fundamentals of vibrations, Waveland Press, 2010.
[29] S.S. Rao, Vibration of continuous systems, John Wiley & Sons, 2007.
[30] S. Awtar, S. Sen, A generalized constraint model for two-dimensional beam flexures: Nonlinear strain energy formulation, Journal of Mechanical Design, 132(8) (2010) 081009.
[31] H. Malaeke, H. Moeenfard, Analytical modeling of large amplitude free vibration of non-uniform beams carrying a both transversely and axially eccentric tip mass, Journal of Sound and Vibration, 366 (2016) 211-229.
[32] H. Moeenfard, S. Awtar, Modeling Geometric Nonlinearities in the Free Vibration of a Planar Beam Flexure With a Tip Mass, Journal of Mechanical Design, 136(4) (2014) 044502.
[33] T.T. William, D.D. Marie, Theory of vibration with applications, New Jersey, (1998).
[34] B. Spencer, S. Dyke, M. Sain, J. Carlson, Phenomenological model for magnetorheological dampers, Journal of engineering mechanics, 123(3) (1997) 230-238.